static void FindIncidentEdge(ClipVertex[] c,
                                     Box2dShape poly1, ref IndexedMatrix xf1, int edge1,
                                     Box2dShape poly2, ref IndexedMatrix xf2)
        {
            IndexedVector3[] normals1 = poly1.GetNormals();

            int count2 = poly2.GetVertexCount();

            IndexedVector3[] vertices2 = poly2.GetVertices();
            IndexedVector3[] normals2  = poly2.GetNormals();

            Debug.Assert(0 <= edge1 && edge1 < poly1.GetVertexCount());

            // Get the normal of the reference edge in poly2's frame.
            IndexedVector3 normal1 = xf2._basis.Transpose() * (xf1._basis * normals1[edge1]);

            // Find the incident edge on poly2.
            int   index  = 0;
            float minDot = MathUtil.BT_LARGE_FLOAT;

            for (int i = 0; i < count2; ++i)
            {
                float dot = normal1.Dot(normals2[i]);
                if (dot < minDot)
                {
                    minDot = dot;
                    index  = i;
                }
            }

            // Build the clip vertices for the incident edge.
            int i1 = index;
            int i2 = i1 + 1 < count2 ? i1 + 1 : 0;

            c[0].v = xf2 * vertices2[i1];
            //	c[0].id.features.referenceEdge = (unsigned char)edge1;
            //	c[0].id.features.incidentEdge = (unsigned char)i1;
            //	c[0].id.features.incidentVertex = 0;

            c[1].v = xf2 * vertices2[i2];
            //	c[1].id.features.referenceEdge = (unsigned char)edge1;
            //	c[1].id.features.incidentEdge = (unsigned char)i2;
            //	c[1].id.features.incidentVertex = 1;
        }
        // Find the separation between poly1 and poly2 for a give edge normal on poly1.
        static float EdgeSeparation(Box2dShape poly1, ref IndexedMatrix xf1, int edge1,
                                    Box2dShape poly2, ref IndexedMatrix xf2)
        {
            IndexedVector3[] vertices1 = poly1.GetVertices();
            IndexedVector3[] normals1  = poly1.GetNormals();

            int count2 = poly2.GetVertexCount();

            IndexedVector3[] vertices2 = poly2.GetVertices();

            Debug.Assert(0 <= edge1 && edge1 < poly1.GetVertexCount());

            // Convert normal from poly1's frame into poly2's frame.
            IndexedVector3 normal1World = xf1._basis * normals1[edge1];
            IndexedVector3 normal1      = xf1._basis.Transpose() * normal1World;

            // Find support vertex on poly2 for -normal.
            int   index  = 0;
            float minDot = MathUtil.BT_LARGE_FLOAT;

            for (int i = 0; i < count2; ++i)
            {
                float dot = vertices2[i].Dot(normal1);
                if (dot < minDot)
                {
                    minDot = dot;
                    index  = i;
                }
            }

            IndexedVector3 v1         = xf1 * vertices1[edge1];
            IndexedVector3 v2         = xf2 * vertices2[index];
            float          separation = (v2 - v1).Dot(normal1World);

            return(separation);
        }
		static void FindIncidentEdge(ClipVertex[] c,
									 Box2dShape poly1, ref IndexedMatrix xf1, int edge1,
									 Box2dShape poly2, ref IndexedMatrix xf2)
		{
			IndexedVector3[] normals1 = poly1.GetNormals();

			int count2 = poly2.GetVertexCount();
			IndexedVector3[] vertices2 = poly2.GetVertices();
			IndexedVector3[] normals2 = poly2.GetNormals();

			Debug.Assert(0 <= edge1 && edge1 < poly1.GetVertexCount());

			// Get the normal of the reference edge in poly2's frame.
            IndexedVector3 normal1 = xf2._basis.Transpose() * (xf1._basis * normals1[edge1]);

			// Find the incident edge on poly2.
			int index = 0;
			float minDot = MathUtil.BT_LARGE_FLOAT;
			for (int i = 0; i < count2; ++i)
			{
				float dot = normal1.Dot(normals2[i]);
				if (dot < minDot)
				{
					minDot = dot;
					index = i;
				}
			}

			// Build the clip vertices for the incident edge.
			int i1 = index;
			int i2 = i1 + 1 < count2 ? i1 + 1 : 0;

			c[0].v = xf2 * vertices2[i1];
		//	c[0].id.features.referenceEdge = (unsigned char)edge1;
		//	c[0].id.features.incidentEdge = (unsigned char)i1;
		//	c[0].id.features.incidentVertex = 0;

			c[1].v = xf2 * vertices2[i2];
		//	c[1].id.features.referenceEdge = (unsigned char)edge1;
		//	c[1].id.features.incidentEdge = (unsigned char)i2;
		//	c[1].id.features.incidentVertex = 1;
		}
		// Find the max separation between poly1 and poly2 using edge normals from poly1.
		static float FindMaxSeparation(ref int edgeIndex,
										 Box2dShape poly1, ref IndexedMatrix xf1,
										 Box2dShape poly2, ref IndexedMatrix xf2)
		{
			int count1 = poly1.GetVertexCount();
			IndexedVector3[] normals1 = poly1.GetNormals();

			// Vector pointing from the centroid of poly1 to the centroid of poly2.
			IndexedVector3 d = xf2 * poly2.GetCentroid() - xf1 * poly1.GetCentroid();
            IndexedVector3 dLocal1 = xf1._basis.Transpose() * d;


			// Find edge normal on poly1 that has the largest projection onto d.
			int edge = 0;
			float maxDot = -MathUtil.BT_LARGE_FLOAT;
			for (int i = 0; i < count1; ++i)
			{
				float dot = normals1[i].Dot(ref dLocal1);
				if (dot > maxDot)
				{
					maxDot = dot;
					edge = i;
				}
			}

			// Get the separation for the edge normal.
			float s = EdgeSeparation(poly1, ref xf1, edge, poly2, ref xf2);
			if (s > 0.0f)
			{
				return s;
			}

			// Check the separation for the previous edge normal.
			int prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
			float sPrev = EdgeSeparation(poly1, ref xf1, prevEdge, poly2, ref xf2);
			if (sPrev > 0.0f)
			{
				return sPrev;
			}

			// Check the separation for the next edge normal.
			int nextEdge = edge + 1 < count1 ? edge + 1 : 0;
			float sNext = EdgeSeparation(poly1, ref xf1, nextEdge, poly2, ref xf2);
			if (sNext > 0.0f)
			{
				return sNext;
			}

			// Find the best edge and the search direction.
			int bestEdge;
			float bestSeparation;
			int increment;
			if (sPrev > s && sPrev > sNext)
			{
				increment = -1;
				bestEdge = prevEdge;
				bestSeparation = sPrev;
			}
			else if (sNext > s)
			{
				increment = 1;
				bestEdge = nextEdge;
				bestSeparation = sNext;
			}
			else
			{
				edgeIndex = edge;
				return s;
			}

			// Perform a local search for the best edge normal.
			for ( ; ; )
			{
				if (increment == -1)
					edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
				else
					edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;

				s = EdgeSeparation(poly1, ref xf1, edge, poly2, ref xf2);
				if (s > 0.0f)
				{
					return s;
				}

				if (s > bestSeparation)
				{
					bestEdge = edge;
					bestSeparation = s;
				}
				else
				{
					break;
				}
			}

			edgeIndex = bestEdge;
			return bestSeparation;
		}
		// Find the separation between poly1 and poly2 for a give edge normal on poly1.
		static float EdgeSeparation(Box2dShape poly1, ref IndexedMatrix xf1, int edge1,
									  Box2dShape poly2, ref IndexedMatrix xf2)
		{
			IndexedVector3[] vertices1 = poly1.GetVertices();
			IndexedVector3[] normals1 = poly1.GetNormals();

			int count2 = poly2.GetVertexCount();
			IndexedVector3[] vertices2 = poly2.GetVertices();

			Debug.Assert(0 <= edge1 && edge1 < poly1.GetVertexCount());

			// Convert normal from poly1's frame into poly2's frame.
			IndexedVector3 normal1World = xf1._basis * normals1[edge1];
            IndexedVector3 normal1 = xf1._basis.Transpose() * normal1World;

			// Find support vertex on poly2 for -normal.
			int index = 0;
			float minDot = MathUtil.BT_LARGE_FLOAT;

			for (int i = 0; i < count2; ++i)
			{
				float dot = vertices2[i].Dot(normal1);
				if (dot < minDot)
				{
					minDot = dot;
					index = i;
				}
			}

            IndexedVector3 v1 = xf1 * vertices1[edge1];
			IndexedVector3 v2 = xf2 * vertices2[index];
			float separation = (v2 - v1).Dot(normal1World);
			return separation;
		}
        // Find the max separation between poly1 and poly2 using edge normals from poly1.
        static float FindMaxSeparation(ref int edgeIndex,
                                       Box2dShape poly1, ref IndexedMatrix xf1,
                                       Box2dShape poly2, ref IndexedMatrix xf2)
        {
            int count1 = poly1.GetVertexCount();

            IndexedVector3[] normals1 = poly1.GetNormals();

            // Vector pointing from the centroid of poly1 to the centroid of poly2.
            IndexedVector3 d       = xf2 * poly2.GetCentroid() - xf1 * poly1.GetCentroid();
            IndexedVector3 dLocal1 = xf1._basis.Transpose() * d;


            // Find edge normal on poly1 that has the largest projection onto d.
            int   edge   = 0;
            float maxDot = -MathUtil.BT_LARGE_FLOAT;

            for (int i = 0; i < count1; ++i)
            {
                float dot = normals1[i].Dot(ref dLocal1);
                if (dot > maxDot)
                {
                    maxDot = dot;
                    edge   = i;
                }
            }

            // Get the separation for the edge normal.
            float s = EdgeSeparation(poly1, ref xf1, edge, poly2, ref xf2);

            if (s > 0.0f)
            {
                return(s);
            }

            // Check the separation for the previous edge normal.
            int   prevEdge = edge - 1 >= 0 ? edge - 1 : count1 - 1;
            float sPrev    = EdgeSeparation(poly1, ref xf1, prevEdge, poly2, ref xf2);

            if (sPrev > 0.0f)
            {
                return(sPrev);
            }

            // Check the separation for the next edge normal.
            int   nextEdge = edge + 1 < count1 ? edge + 1 : 0;
            float sNext    = EdgeSeparation(poly1, ref xf1, nextEdge, poly2, ref xf2);

            if (sNext > 0.0f)
            {
                return(sNext);
            }

            // Find the best edge and the search direction.
            int   bestEdge;
            float bestSeparation;
            int   increment;

            if (sPrev > s && sPrev > sNext)
            {
                increment      = -1;
                bestEdge       = prevEdge;
                bestSeparation = sPrev;
            }
            else if (sNext > s)
            {
                increment      = 1;
                bestEdge       = nextEdge;
                bestSeparation = sNext;
            }
            else
            {
                edgeIndex = edge;
                return(s);
            }

            // Perform a local search for the best edge normal.
            for ( ; ;)
            {
                if (increment == -1)
                {
                    edge = bestEdge - 1 >= 0 ? bestEdge - 1 : count1 - 1;
                }
                else
                {
                    edge = bestEdge + 1 < count1 ? bestEdge + 1 : 0;
                }

                s = EdgeSeparation(poly1, ref xf1, edge, poly2, ref xf2);
                if (s > 0.0f)
                {
                    return(s);
                }

                if (s > bestSeparation)
                {
                    bestEdge       = edge;
                    bestSeparation = s;
                }
                else
                {
                    break;
                }
            }

            edgeIndex = bestEdge;
            return(bestSeparation);
        }