public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, ref DistanceInput input) { cache = new SimplexCache(); ++b2_gjkCalls; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, ref input.proxyA, ref input.transformA, ref input.proxyB, ref input.transformB); // Get simplex vertices as an array. int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3 <int> saveA = new FixedArray3 <int>(); FixedArray3 <int> saveB = new FixedArray3 <int>(); int saveCount = 0; Vector2 closestPoint = simplex.GetClosestPoint(); float distanceSqr1 = closestPoint.sqrMagnitude; float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. saveCount = simplex._count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex._v[i].indexA; saveB[i] = simplex._v[i].indexB; } switch (simplex._count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: //Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex._count == 3) { break; } // Compute closest point. Vector2 p = simplex.GetClosestPoint(); distanceSqr2 = p.sqrMagnitude; // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.sqrMagnitude < Settings.b2_epsilon * Settings.b2_epsilon) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex._v[simplex._count]; vertex.indexA = input.proxyA.GetSupport(MathUtils.MultiplyT(ref input.transformA.R, -d)); vertex.wA = MathUtils.Multiply(ref input.transformA, input.proxyA.GetVertex(vertex.indexA)); vertex.indexB = input.proxyB.GetSupport(MathUtils.MultiplyT(ref input.transformB.R, d)); vertex.wB = MathUtils.Multiply(ref input.transformB, input.proxyB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA; simplex._v[simplex._count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; ++b2_gjkIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.indexA == saveA[i] && vertex.indexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex._count; } b2_gjkMaxIters = Math.Max(b2_gjkMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.pointA, out output.pointB); output.distance = (output.pointA - output.pointB).magnitude; output.iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.useRadii) { float rA = input.proxyA._radius; float rB = input.proxyB._radius; if (output.distance > rA + rB && output.distance > Settings.b2_epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.distance -= rA + rB; Vector2 normal = output.pointB - output.pointA; normal.Normalize(); output.pointA += rA * normal; output.pointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f * (output.pointA + output.pointB); output.pointA = p; output.pointB = p; output.distance = 0.0f; } } }
/// Compute the closest points between two shapes. Supports any combination of: /// CircleShape, PolygonShape, EdgeShape. The simplex cache is input/output. /// On the first call set SimplexCache.count to zero. public static void Distance(out DistanceOutput output, SimplexCache cache, DistanceInput input) { ++_gjkCalls; DistanceProxy proxyA = input.proxyA; DistanceProxy proxyB = input.proxyB; Transform transformA = input.transformA; Transform transformB = input.transformB; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(cache, proxyA, transformA, proxyB, transformB); // Get simplex vertices as an array. SimplexVertex[] vertices = simplex.verticies; const int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. int[] saveA = new int[3]; int[] saveB = new int[3]; int saveCount = 0; float distanceSqr1 = Single.MaxValue; float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. saveCount = simplex.m_count; for (int i = 0; i < saveCount; ++i) { saveA[i] = vertices[i].indexA; saveB[i] = vertices[i].indexB; } switch (simplex.m_count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Utilities.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex.m_count == 3) { break; } // Compute closest point. Vec2 p = simplex.GetClosestPoint(); distanceSqr2 = p.LengthSquared(); // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vec2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Single.Epsilon * Single.Epsilon) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = vertices[simplex.m_count]; vertex.indexA = proxyA.GetSupport(Utilities.MulT(transformA.q, -d)); vertex.wA = Utilities.Mul(transformA, proxyA.GetVertex(vertex.indexA)); Vec2 wBLocal; vertex.indexB = proxyB.GetSupport(Utilities.MulT(transformB.q, d)); vertex.wB = Utilities.Mul(transformB, proxyB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA; // Iteration count is equated to the number of support point calls. ++iter; ++_gjkIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.indexA == saveA[i] && vertex.indexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex.m_count; } _gjkMaxIters = Math.Max(_gjkMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.pointA, out output.pointB); output.distance = Utilities.Distance(output.pointA, output.pointB); output.iterations = iter; // Cache the simplex. simplex.WriteCache(cache); // Apply radii if requested. if (input.useRadii) { float rA = proxyA.m_radius; float rB = proxyB.m_radius; if (output.distance > rA + rB && output.distance > Single.Epsilon) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.distance -= rA + rB; Vec2 normal = output.pointB - output.pointA; normal.Normalize(); output.pointA += rA * normal; output.pointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vec2 p = 0.5f * (output.pointA + output.pointB); output.pointA = p; output.pointB = p; output.distance = 0.0f; } } }