public void Initialize(ContactPositionConstraint pc, Transform xfA, Transform xfB, int index)
		{
			Utilities.Assert(pc.pointCount > 0);

			switch (pc.type)
			{
			case Manifold.ManifoldType.e_circles:
				{
					Vec2 pointA = Utilities.Mul(xfA, pc.localPoint);
					Vec2 pointB = Utilities.Mul(xfB, pc.localPoints[0]);
					normal = pointB - pointA;
					normal.Normalize();
					point = 0.5f * (pointA + pointB);
					separation = Utilities.Dot(pointB - pointA, normal) - pc.radiusA - pc.radiusB;
				}
				break;

			case Manifold.ManifoldType.e_faceA:
				{
					normal = Utilities.Mul(xfA.q, pc.localNormal);
					Vec2 planePoint = Utilities.Mul(xfA, pc.localPoint);

					Vec2 clipPoint = Utilities.Mul(xfB, pc.localPoints[index]);
					separation = Utilities.Dot(clipPoint - planePoint, normal) - pc.radiusA - pc.radiusB;
					point = clipPoint;
				}
				break;

			case Manifold.ManifoldType.e_faceB:
				{
					normal = Utilities.Mul(xfB.q, pc.localNormal);
					Vec2 planePoint = Utilities.Mul(xfB, pc.localPoint);

					Vec2 clipPoint = Utilities.Mul(xfA, pc.localPoints[index]);
					separation = Utilities.Dot(clipPoint - planePoint, normal) - pc.radiusA - pc.radiusB;
					point = clipPoint;

					// Ensure normal points from A to B
					normal = -normal;
				}
				break;
			}
		}
示例#2
0
		public ContactSolver(ContactSolverDef def) {
			m_step = def.step;
			m_positionConstraints = new List<ContactPositionConstraint>();
			m_velocityConstraints = new List<ContactVelocityConstraint>();
			m_positions = def.positions;
			m_velocities = def.velocities;
			m_contacts = def.contacts;

			// Initialize position independent portions of the constraints.
			for (int i = 0; i < def.contacts.Count(); ++i) {
				Contact contact = m_contacts[i];

				Fixture fixtureA = contact.m_fixtureA;
				Fixture fixtureB = contact.m_fixtureB;
				Shape shapeA = fixtureA.GetShape();
				Shape shapeB = fixtureB.GetShape();
				float radiusA = shapeA.m_radius;
				float radiusB = shapeB.m_radius;
				Body bodyA = fixtureA.GetBody();
				Body bodyB = fixtureB.GetBody();
				Manifold manifold = contact.GetManifold();

				int pointCount = manifold.points.Count();
				Utilities.Assert(pointCount > 0);

				ContactVelocityConstraint vc = new ContactVelocityConstraint();
				vc.friction = contact.m_friction;
				vc.restitution = contact.m_restitution;
				vc.tangentSpeed = contact.m_tangentSpeed;
				vc.indexA = bodyA.m_islandIndex;
				vc.indexB = bodyB.m_islandIndex;
				vc.invMassA = bodyA.m_invMass;
				vc.invMassB = bodyB.m_invMass;
				vc.invIA = bodyA.m_invI;
				vc.invIB = bodyB.m_invI;
				vc.contactIndex = i;
				//vc.points.Count() = pointCount;
				vc.K.SetZero();
				vc.normalMass.SetZero();

				ContactPositionConstraint pc = new ContactPositionConstraint();
				pc.indexA = bodyA.m_islandIndex;
				pc.indexB = bodyB.m_islandIndex;
				pc.invMassA = bodyA.m_invMass;
				pc.invMassB = bodyB.m_invMass;
				pc.localCenterA = bodyA.m_sweep.localCenter;
				pc.localCenterB = bodyB.m_sweep.localCenter;
				pc.invIA = bodyA.m_invI;
				pc.invIB = bodyB.m_invI;
				pc.localNormal = manifold.localNormal;
				pc.localPoint = manifold.localPoint;
				pc.pointCount = pointCount;
				pc.radiusA = radiusA;
				pc.radiusB = radiusB;
				pc.type = manifold.type;

				for (int j = 0; j < pointCount; ++j) {
					ManifoldPoint cp = manifold.points[j];
					VelocityConstraintPoint vcp = new VelocityConstraintPoint();
					
					if (m_step.warmStarting) {
						vcp.normalImpulse = m_step.dtRatio * cp.normalImpulse;
						vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse;
					} else {
						vcp.normalImpulse = 0.0f;
						vcp.tangentImpulse = 0.0f;
					}

					vcp.rA.SetZero();
					vcp.rB.SetZero();
					vcp.normalMass = 0.0f;
					vcp.tangentMass = 0.0f;
					vcp.velocityBias = 0.0f;
					vc.points.Add(vcp);

					pc.localPoints[j] = cp.localPoint;
				}
				m_velocityConstraints.Add(vc);
				m_positionConstraints.Add(pc);
			}
		}
示例#3
0
        public ContactSolver(ContactSolverDef def)
        {
            m_step = def.step;
            m_positionConstraints = new List <ContactPositionConstraint>();
            m_velocityConstraints = new List <ContactVelocityConstraint>();
            m_positions           = def.positions;
            m_velocities          = def.velocities;
            m_contacts            = def.contacts;

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < def.contacts.Count(); ++i)
            {
                Contact contact = m_contacts[i];

                Fixture  fixtureA = contact.m_fixtureA;
                Fixture  fixtureB = contact.m_fixtureB;
                Shape    shapeA   = fixtureA.GetShape();
                Shape    shapeB   = fixtureB.GetShape();
                float    radiusA  = shapeA.m_radius;
                float    radiusB  = shapeB.m_radius;
                Body     bodyA    = fixtureA.GetBody();
                Body     bodyB    = fixtureB.GetBody();
                Manifold manifold = contact.GetManifold();

                int pointCount = manifold.points.Count();
                Utilities.Assert(pointCount > 0);

                ContactVelocityConstraint vc = new ContactVelocityConstraint();
                vc.friction     = contact.m_friction;
                vc.restitution  = contact.m_restitution;
                vc.tangentSpeed = contact.m_tangentSpeed;
                vc.indexA       = bodyA.m_islandIndex;
                vc.indexB       = bodyB.m_islandIndex;
                vc.invMassA     = bodyA.m_invMass;
                vc.invMassB     = bodyB.m_invMass;
                vc.invIA        = bodyA.m_invI;
                vc.invIB        = bodyB.m_invI;
                vc.contactIndex = i;
                //vc.points.Count() = pointCount;
                vc.K.SetZero();
                vc.normalMass.SetZero();

                ContactPositionConstraint pc = new ContactPositionConstraint();
                pc.indexA       = bodyA.m_islandIndex;
                pc.indexB       = bodyB.m_islandIndex;
                pc.invMassA     = bodyA.m_invMass;
                pc.invMassB     = bodyB.m_invMass;
                pc.localCenterA = bodyA.m_sweep.localCenter;
                pc.localCenterB = bodyB.m_sweep.localCenter;
                pc.invIA        = bodyA.m_invI;
                pc.invIB        = bodyB.m_invI;
                pc.localNormal  = manifold.localNormal;
                pc.localPoint   = manifold.localPoint;
                pc.pointCount   = pointCount;
                pc.radiusA      = radiusA;
                pc.radiusB      = radiusB;
                pc.type         = manifold.type;

                for (int j = 0; j < pointCount; ++j)
                {
                    ManifoldPoint           cp  = manifold.points[j];
                    VelocityConstraintPoint vcp = new VelocityConstraintPoint();

                    if (m_step.warmStarting)
                    {
                        vcp.normalImpulse  = m_step.dtRatio * cp.normalImpulse;
                        vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse;
                    }
                    else
                    {
                        vcp.normalImpulse  = 0.0f;
                        vcp.tangentImpulse = 0.0f;
                    }

                    vcp.rA.SetZero();
                    vcp.rB.SetZero();
                    vcp.normalMass   = 0.0f;
                    vcp.tangentMass  = 0.0f;
                    vcp.velocityBias = 0.0f;
                    vc.points.Add(vcp);

                    pc.localPoints[j] = cp.localPoint;
                }
                m_velocityConstraints.Add(vc);
                m_positionConstraints.Add(pc);
            }
        }
示例#4
0
        public void InitializeVelocityConstraints()
        {
            for (int i = 0; i < m_contacts.Count(); ++i)
            {
                ContactVelocityConstraint vc = m_velocityConstraints[i];
                ContactPositionConstraint pc = m_positionConstraints[i];

                float    radiusA  = pc.radiusA;
                float    radiusB  = pc.radiusB;
                Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

                int indexA = vc.indexA;
                int indexB = vc.indexB;

                float mA           = vc.invMassA;
                float mB           = vc.invMassB;
                float iA           = vc.invIA;
                float iB           = vc.invIB;
                Vec2  localCenterA = pc.localCenterA;
                Vec2  localCenterB = pc.localCenterB;

                Vec2  cA = m_positions[indexA].c;
                float aA = m_positions[indexA].a;
                Vec2  vA = m_velocities[indexA].v;
                float wA = m_velocities[indexA].w;

                Vec2  cB = m_positions[indexB].c;
                float aB = m_positions[indexB].a;
                Vec2  vB = m_velocities[indexB].v;
                float wB = m_velocities[indexB].w;

                Utilities.Assert(manifold.points.Count() > 0);

                Transform xfA = new Transform();
                Transform xfB = new Transform();
                xfA.q.Set(aA);
                xfB.q.Set(aB);
                xfA.p = cA - Utilities.Mul(xfA.q, localCenterA);
                xfB.p = cB - Utilities.Mul(xfB.q, localCenterB);

                WorldManifold worldManifold = new WorldManifold();
                worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB);

                vc.normal = worldManifold.normal;

                int pointCount = vc.points.Count;
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.points[j];

                    vcp.rA = worldManifold.points[j] - cA;
                    vcp.rB = worldManifold.points[j] - cB;

                    float rnA = Utilities.Cross(vcp.rA, vc.normal);
                    float rnB = Utilities.Cross(vcp.rB, vc.normal);

                    float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

                    Vec2 tangent = Utilities.Cross(vc.normal, 1.0f);

                    float rtA = Utilities.Cross(vcp.rA, tangent);
                    float rtB = Utilities.Cross(vcp.rB, tangent);

                    float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

                    vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

                    // Setup a velocity bias for restitution.
                    vcp.velocityBias = 0.0f;
                    float vRel = Utilities.Dot(vc.normal, vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA));
                    if (vRel < -Settings._velocityThreshold)
                    {
                        vcp.velocityBias = -vc.restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (vc.points.Count() == 2)
                {
                    VelocityConstraintPoint vcp1 = vc.points[0];
                    VelocityConstraintPoint vcp2 = vc.points[1];

                    float rn1A = Utilities.Cross(vcp1.rA, vc.normal);
                    float rn1B = Utilities.Cross(vcp1.rB, vc.normal);
                    float rn2A = Utilities.Cross(vcp2.rA, vc.normal);
                    float rn2B = Utilities.Cross(vcp2.rB, vc.normal);

                    float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
                    float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
                    float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 1000.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        vc.K.ex.Set(k11, k12);
                        vc.K.ey.Set(k12, k22);
                        vc.normalMass = vc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        vc.points.Clear();
                        vc.points.Add(new VelocityConstraintPoint());
                    }
                }
            }
        }
示例#5
0
        public bool SolvePositionConstraints()
        {
            float minSeparation = 0.0f;

            for (int i = 0; i < m_contacts.Count(); ++i)
            {
                ContactPositionConstraint pc = m_positionConstraints[i];

                int   indexA       = pc.indexA;
                int   indexB       = pc.indexB;
                Vec2  localCenterA = pc.localCenterA;
                float mA           = pc.invMassA;
                float iA           = pc.invIA;
                Vec2  localCenterB = pc.localCenterB;
                float mB           = pc.invMassB;
                float iB           = pc.invIB;
                int   pointCount   = pc.pointCount;

                Vec2  cA = m_positions[indexA].c;
                float aA = m_positions[indexA].a;

                Vec2  cB = m_positions[indexB].c;
                float aB = m_positions[indexB].a;

                // Solve normal constraints
                for (int j = 0; j < pointCount; ++j)
                {
                    Transform xfA = new Transform();
                    Transform xfB = new Transform();
                    xfA.q.Set(aA);
                    xfB.q.Set(aB);
                    xfA.p = cA - Utilities.Mul(xfA.q, localCenterA);
                    xfB.p = cB - Utilities.Mul(xfB.q, localCenterB);

                    PositionSolverManifold psm = new PositionSolverManifold();
                    psm.Initialize(pc, xfA, xfB, j);
                    Vec2 normal = psm.normal;

                    Vec2  point      = psm.point;
                    float separation = psm.separation;

                    Vec2 rA = point - cA;
                    Vec2 rB = point - cB;

                    // Track max constraint error.
                    minSeparation = Math.Min(minSeparation, separation);

                    // Prevent large corrections and allow slop.
                    float C = Utilities.Clamp(Settings._baumgarte * (separation + Settings._linearSlop), -Settings._maxLinearCorrection, 0.0f);

                    // Compute the effective mass.
                    float rnA = Utilities.Cross(rA, normal);
                    float rnB = Utilities.Cross(rB, normal);
                    float K   = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    // Compute normal impulse
                    float impulse = K > 0.0f ? -C / K : 0.0f;

                    Vec2 P = impulse * normal;

                    cA -= mA * P;
                    aA -= iA * Utilities.Cross(rA, P);

                    cB += mB * P;
                    aB += iB * Utilities.Cross(rB, P);
                }

                m_positions[indexA].c = cA;
                m_positions[indexA].a = aA;

                m_positions[indexB].c = cB;
                m_positions[indexB].a = aB;
            }

            // We can't expect minSpeparation >= -_linearSlop because we don't
            // push the separation above -_linearSlop.
            return(minSeparation >= -3.0f * Settings._linearSlop);
        }