public void StoreImpulses() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; Manifold manifold = _contacts[vc.contactIndex].Manifold; for (int j = 0; j < vc.pointCount; ++j) { manifold.points[j].normalImpulse = vc.points[j].normalImpulse; manifold.points[j].tangentImpulse = vc.points[j].tangentImpulse; } } }
public void WarmStart() { // Warm start. for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float iA = vc.invIA; float mB = vc.invMassB; float iB = vc.invIB; int pointCount = vc.pointCount; Vector2 vA = _velocities[indexA].v; float wA = _velocities[indexA].w; Vector2 vB = _velocities[indexB].v; float wB = _velocities[indexB].w; Vector2 normal = vc.normal; Vector2 tangent = Vectex.Cross(normal, 1.0f); for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; Vector2 P = vcp.normalImpulse * normal + vcp.tangentImpulse * tangent; wA -= iA * Vectex.Cross(vcp.rA, P); vA -= mA * P; wB += iB * Vectex.Cross(vcp.rB, P); vB += mB * P; } _velocities[indexA].v = vA; _velocities[indexA].w = wA; _velocities[indexB].v = vB; _velocities[indexB].w = wB; } }
public ContactSolver(ContactSolverDef def) { _step = def.step; _count = def.count; _positionConstraints = new ContactPositionConstraint[_count]; _velocityConstraints = new ContactVelocityConstraint[_count]; _positions = def.positions; _velocities = def.velocities; _contacts = def.contacts; for (int i = 0; i < _count; ++i) { Contact contact = _contacts[i]; Fixture fixtureA = contact.m_fixtureA; Fixture fixtureB = contact.m_fixtureB; Shape shapeA = fixtureA.Shape; Shape shapeB = fixtureB.Shape; float radiusA = shapeA.m_radius; float radiusB = shapeB.m_radius; Body bodyA = fixtureA.Body; Body bodyB = fixtureB.Body; Manifold manifold = contact.Manifold; int pointCount = manifold.pointCount; //Debug.Assert(pointCount > 0); _velocityConstraints[i] = new ContactVelocityConstraint(); ContactVelocityConstraint vc = _velocityConstraints[i]; vc.friction = contact.m_friction; vc.restitution = contact.m_restitution; vc.tangentSpeed = contact.m_tangentSpeed; vc.indexA = bodyA.m_islandIndex; vc.indexB = bodyB.m_islandIndex; vc.invMassA = bodyA.m_invMass; vc.invMassB = bodyB.m_invMass; vc.invIA = bodyA.m_invI; vc.invIB = bodyB.m_invI; vc.contactIndex = i; vc.pointCount = pointCount; vc.K = new Matrix3x2(); // .SetZero(); vc.normalMass = new Matrix3x2(); // .SetZero(); _positionConstraints[i] = new ContactPositionConstraint(); ContactPositionConstraint pc = _positionConstraints[i]; pc.indexA = bodyA.m_islandIndex; pc.indexB = bodyB.m_islandIndex; pc.invMassA = bodyA.m_invMass; pc.invMassB = bodyB.m_invMass; pc.localCenterA = bodyA.m_sweep.localCenter; pc.localCenterB = bodyB.m_sweep.localCenter; pc.invIA = bodyA.m_invI; pc.invIB = bodyB.m_invI; pc.localNormal = manifold.localNormal; pc.localPoint = manifold.localPoint; pc.pointCount = pointCount; pc.radiusA = radiusA; pc.radiusB = radiusB; pc.type = manifold.type; for (int j = 0; j < pointCount; ++j) { ManifoldPoint cp = manifold.points[j]; vc.points[j] = new VelocityConstraintPoint(); VelocityConstraintPoint vcp = vc.points[j]; if (_step.warmStarting) { vcp.normalImpulse = _step.dtRatio * cp.normalImpulse; vcp.tangentImpulse = _step.dtRatio * cp.tangentImpulse; } else { vcp.normalImpulse = 0f; vcp.tangentImpulse = 0f; } vcp.rA = Vector2.Zero; vcp.rB = Vector2.Zero; vcp.normalMass = 0f; vcp.tangentMass = 0f; vcp.velocityBias = 0f; pc.localPoints[j] = cp.localPoint; } } }
public void SolveVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float iA = vc.invIA; float mB = vc.invMassB; float iB = vc.invIB; int pointCount = vc.pointCount; Vector2 vA = _velocities[indexA].v; float wA = _velocities[indexA].w; Vector2 vB = _velocities[indexB].v; float wB = _velocities[indexB].w; Vector2 normal = vc.normal; Vector2 tangent = Vectex.Cross(normal, 1.0f); float friction = vc.friction; //Debug.Assert(pointCount == 1 || pointCount == 2); // Solve tangent constraints first because non-penetration is more important // than friction. for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; // Relative velocity at contact Vector2 dv = vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA); // Compute tangent force float vt = Vector2.Dot(dv, tangent) - vc.tangentSpeed; float lambda = vcp.tangentMass * (-vt); // b2Clamp the accumulated force float maxFriction = friction * vcp.normalImpulse; float newImpulse = Math.Clamp(vcp.tangentImpulse + lambda, -maxFriction, maxFriction); lambda = newImpulse - vcp.tangentImpulse; vcp.tangentImpulse = newImpulse; // Apply contact impulse Vector2 P = lambda * tangent; vA -= mA * P; wA -= iA * Vectex.Cross(vcp.rA, P); vB += mB * P; wB += iB * Vectex.Cross(vcp.rB, P); } // Solve normal constraints if (pointCount == 1 || Settings.BlockSolve == false) { for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; // Relative velocity at contact Vector2 dv = vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA); // Compute normal impulse float vn = Vector2.Dot(dv, normal); float lambda = -vcp.normalMass * (vn - vcp.velocityBias); // b2Clamp the accumulated impulse float newImpulse = MathF.Max(vcp.normalImpulse + lambda, 0.0f); lambda = newImpulse - vcp.normalImpulse; vcp.normalImpulse = newImpulse; // Apply contact impulse Vector2 P = lambda * normal; vA -= mA * P; wA -= iA * Vectex.Cross(vcp.rA, P); vB += mB * P; wB += iB * Vectex.Cross(vcp.rB, P); } } else { // Block solver developed in collaboration with Dirk Gregorius (back in 01/07 on Box2D_Lite). // Build the mini LCP for this contact patch // // vn = A * x + b, vn >= 0, x >= 0 and vn_i * x_i = 0 with i = 1..2 // // A = J * W * JT and J = ( -n, -r1 x n, n, r2 x n ) // b = vn0 - velocityBias // // The system is solved using the "Total enumeration method" (s. Murty). The complementary constraint vn_i * x_i // implies that we must have in any solution either vn_i = 0 or x_i = 0. So for the 2D contact problem the cases // vn1 = 0 and vn2 = 0, x1 = 0 and x2 = 0, x1 = 0 and vn2 = 0, x2 = 0 and vn1 = 0 need to be tested. The first valid // solution that satisfies the problem is chosen. // // In order to account of the accumulated impulse 'a' (because of the iterative nature of the solver which only requires // that the accumulated impulse is clamped and not the incremental impulse) we change the impulse variable (x_i). // // Substitute: // // x = a + d // // a := old total impulse // x := new total impulse // d := incremental impulse // // For the current iteration we extend the formula for the incremental impulse // to compute the new total impulse: // // vn = A * d + b // = A * (x - a) + b // = A * x + b - A * a // = A * x + b' // b' = b - A * a; VelocityConstraintPoint cp1 = vc.points[0]; VelocityConstraintPoint cp2 = vc.points[1]; Vector2 a = new Vector2(cp1.normalImpulse, cp2.normalImpulse); //Debug.Assert(a.X >= 0.0f && a.Y >= 0.0f); // Relative velocity at contact Vector2 dv1 = vB + Vectex.Cross(wB, cp1.rB) - vA - Vectex.Cross(wA, cp1.rA); Vector2 dv2 = vB + Vectex.Cross(wB, cp2.rB) - vA - Vectex.Cross(wA, cp2.rA); // Compute normal velocity float vn1 = Vector2.Dot(dv1, normal); float vn2 = Vector2.Dot(dv2, normal); Vector2 b = new Vector2((float)(vn1 - cp1.velocityBias), (float)(vn2 - cp2.velocityBias)); // Compute b' b -= Vector2.Transform(a, vc.K); // Common.Math.Mul(vc.K, a); //const float k_errorTol = 1e-3f; //B2_NOT_USED(k_errorTol); for (; ;) { // // Case 1: vn = 0 // // 0 = A * x + b' // // Solve for x: // // x = - inv(A) * b' // Vector2 x = -Vector2.Transform(b, vc.normalMass); //Common.Math.Mul(vc.normalMass, b); if (x.X >= 0.0f && x.Y >= 0.0f) { // Get the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // // Case 2: vn1 = 0 and x2 = 0 // // 0 = a11 * x1 + a12 * 0 + b1' // vn2 = a21 * x1 + a22 * 0 + b2' // x.X = -cp1.normalMass * b.X; x.Y = 0.0f; vn1 = 0.0f; vn2 = vc.K.M22 * x.X + b.Y; if (x.X >= 0.0f && vn2 >= 0.0f) { // Get the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // // Case 3: vn2 = 0 and x1 = 0 // // vn1 = a11 * 0 + a12 * x2 + b1' // 0 = a21 * 0 + a22 * x2 + b2' // x.X = 0.0f; x.Y = -cp2.normalMass * b.Y; vn1 = vc.K.M12 * x.Y + b.X; vn2 = 0.0f; if (x.Y >= 0.0f && vn1 >= 0.0f) { // Resubstitute for the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // // Case 4: x1 = 0 and x2 = 0 // // vn1 = b1 // vn2 = b2; x.X = 0.0f; x.Y = 0.0f; vn1 = b.X; vn2 = b.Y; if (vn1 >= 0.0f && vn2 >= 0.0f) { // Resubstitute for the incremental impulse Vector2 d = x - a; // Apply incremental impulse Vector2 P1 = d.X * normal; Vector2 P2 = d.Y * normal; vA -= mA * (P1 + P2); wA -= iA * (Vectex.Cross(cp1.rA, P1) + Vectex.Cross(cp2.rA, P2)); vB += mB * (P1 + P2); wB += iB * (Vectex.Cross(cp1.rB, P1) + Vectex.Cross(cp2.rB, P2)); // Accumulate cp1.normalImpulse = x.X; cp2.normalImpulse = x.Y; break; } // No solution, give up. This is hit sometimes, but it doesn't seem to matter. break; } } _velocities[indexA].v = vA; _velocities[indexA].w = wA; _velocities[indexB].v = vB; _velocities[indexB].w = wB; } }
public void InitializeVelocityConstraints() { for (int i = 0; i < _count; ++i) { ContactVelocityConstraint vc = _velocityConstraints[i]; ContactPositionConstraint pc = _positionConstraints[i]; float radiusA = pc.radiusA; float radiusB = pc.radiusB; Manifold manifold = _contacts[vc.contactIndex].Manifold; int indexA = vc.indexA; int indexB = vc.indexB; float mA = vc.invMassA; float mB = vc.invMassB; float iA = vc.invIA; float iB = vc.invIB; Vector2 localCenterA = pc.localCenterA; Vector2 localCenterB = pc.localCenterB; Vector2 cA = _positions[indexA].c; float aA = _positions[indexA].a; Vector2 vA = _velocities[indexA].v; float wA = _velocities[indexA].w; Vector2 cB = _positions[indexB].c; float aB = _positions[indexB].a; Vector2 vB = _velocities[indexB].v; float wB = _velocities[indexB].w; //Debug.Assert(manifold.pointCount > 0); Transform xfA = new Transform(); Transform xfB = new Transform(); xfA.q = Matrex.CreateRotation(aA); // Actually about twice as fast to use our own function xfB.q = Matrex.CreateRotation(aB); // Actually about twice as fast to use our own function xfA.p = cA - Vector2.Transform(localCenterA, xfA.q); // Common.Math.Mul(xfA.q, localCenterA); xfB.p = cB - Vector2.Transform(localCenterB, xfB.q); // Common.Math.Mul(xfB.q, localCenterB); WorldManifold worldManifold = new WorldManifold(); worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB); vc.normal = worldManifold.normal; int pointCount = vc.pointCount; for (int j = 0; j < pointCount; ++j) { VelocityConstraintPoint vcp = vc.points[j]; vcp.rA = worldManifold.points[j] - cA; vcp.rB = worldManifold.points[j] - cB; float rnA = Vectex.Cross(vcp.rA, vc.normal); float rnB = Vectex.Cross(vcp.rB, vc.normal); float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB; vcp.normalMass = kNormal > 0f ? 1f / kNormal : 0f; Vector2 tangent = Vectex.Cross(vc.normal, 1f); float rtA = Vectex.Cross(vcp.rA, tangent); float rtB = Vectex.Cross(vcp.rB, tangent); float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB; vcp.tangentMass = kTangent > 0f ? 1f / kTangent : 0f; vcp.velocityBias = 0f; float vRel = Vector2.Dot(vc.normal, vB + Vectex.Cross(wB, vcp.rB) - vA - Vectex.Cross(wA, vcp.rA)); if (vRel < -Settings.VelocityThreshold) { vcp.velocityBias = -vc.restitution * vRel; } } // If we have two points, then prepare the block solver. if (vc.pointCount == 2 && Settings.BlockSolve) { VelocityConstraintPoint vcp1 = vc.points[0]; VelocityConstraintPoint vcp2 = vc.points[1]; float rn1A = Vectex.Cross(vcp1.rA, vc.normal); float rn1B = Vectex.Cross(vcp1.rB, vc.normal); float rn2A = Vectex.Cross(vcp2.rA, vc.normal); float rn2B = Vectex.Cross(vcp2.rB, vc.normal); float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B; float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B; float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B; // Ensure a reasonable condition number. const float k_maxConditionNumber = 1000.0f; if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) { // K is safe to invert. vc.K = new Matrix3x2(k11, k12, k12, k22, 0, 0); // vc.K.ex = new Vector2(k11, k12); // vc.K.ey = new Vector2(k12, k22); /*Matrix3x2*/ Matrex.Invert(vc.K, out Matrix3x2 KT); vc.normalMass = KT; } else { // The constraints are redundant, just use one. // TODO_ERIN use deepest? vc.pointCount = 1; } } } }