public Dictionary <object, object> predict(Dictionary <string, dynamic> inputData, bool byName = true, Combiner combiner = Combiner.Plurality, int missing_strategy = 0, bool addDistribution = true) { mv = new MultiVote(); if (_models.Count > 1) { inputData = _models[0].prepareInputData(inputData); } for (i = 0; i < this._models.Count; i++) { _modelsPredictions[i] = this._models[i].predict(inputData, byName, missing_strategy); mv.append(_modelsPredictions[i].toDictionary(addDistribution)); } return(mv.combine((int)combiner, addDistribution: addDistribution)); }
public Dictionary <object, object> predict(Dictionary <string, dynamic> inputData, bool byName = true, Combiner combiner = Combiner.Plurality, int missing_strategy = 0, bool addDistribution = true) { mv = new MultiVote(); bool addConfidence = areBoostedTrees; if (_models.Count > 1) { inputData = _models[0].prepareInputData(inputData); byName = false; } mv.areBoostedTrees = areBoostedTrees; Dictionary <object, object> vote; for (i = 0; i < this._models.Count; i++) { if (areBoostedTrees) { _modelsBoostedPredictions[i] = this._models[i].predictBoosted(inputData, byName, missing_strategy); vote = _modelsBoostedPredictions[i].toDictionary(); vote["weight"] = this._models[i].Boosting["weight"]; if (this._models[i].Boosting.ContainsKey("objective_class")) { vote["class"] = this._models[i].Boosting["objective_class"]; } mv.append(vote); } else { _modelsPredictions[i] = this._models[i].predict(inputData, byName, missing_strategy); mv.append(_modelsPredictions[i].toDictionary(addDistribution)); } } return(mv.combine((int)combiner, addDistribution: addDistribution, addConfidence: addConfidence)); }