Class representing a stormwater mananagement facility
示例#1
0
        /// <summary>
        /// Performs checks to determine whether a Facility has required parameters assigned, and that
        /// all parameters are valid.
        /// </summary>
        /// <param name="facility">The Facility to validate</param>
        /// <param name="category">The Hierarchy Category the facility will be validated against</param>
        /// <param name="message">A message indicating the first error found in an invalid facility,
        /// or "Valid Configuration" if the facility is valid.</param>
        /// <returns>True if the facility parameters are valid, otherwise false</returns>
        public static bool Validate(Facility facility, int category, out string message)
        {
            facility._validConfiguration = true;

            switch (category)
            {
            case 1:
                if (facility._configuration != FacilityConfiguration.A &&
                    facility._configuration != FacilityConfiguration.B)
                {
                    message = "Only Configuration A or B may be used for Category 1";
                    facility._validConfiguration = false;
                    return(false);
                }
                break;

            case 2:
                break;

            case 3:
                if (facility._configuration == FacilityConfiguration.E ||
                    facility._configuration == FacilityConfiguration.F)
                {
                    message = "Configuration E and F may not be used for Category 3";
                    facility._validConfiguration = false;
                    return(false);
                }
                break;

            case 4:
                if (facility._configuration == FacilityConfiguration.E ||
                    facility._configuration == FacilityConfiguration.F)
                {
                    message = "Configuration E and F may not be used for Category 4";
                    facility._validConfiguration = false;
                    return(false);
                }
                break;

            default:
                message = "Unknown configuration, unable to validate facility";
                facility._validConfiguration = false;
                return(false);
            }

            Stack <string> invalidated = new Stack <string>();

            switch (facility.Type)
            {
            case FacilityType.Basin:
            {
                switch (facility.Shape)
                {
                case FacilityShape.Rectangle:
                    if (facility.BottomWidthFt < 0)
                    {
                        invalidated.Push("Bottom Width must be greater than or equal to zero.");
                    }
                    if (facility.SideSlopeRatio < 0)
                    {
                        invalidated.Push("Side Slope Ratio must be greater than or equal to zero.");
                    }
                    if (facility.FreeboardIn < 0)
                    {
                        invalidated.Push("Freeboard must be greater than or equal to zero.");
                    }
                    break;

                case FacilityShape.Amoeba:
                    if (facility.BottomPerimeterLengthFt < Math.Sqrt(4 * facility.BottomAreaSqFt * Math.PI))
                    {
                        invalidated.Push("Bottom Perimeter Length must be greater than or equal to the circumference of a circle with area equal to bottom area.");
                    }
                    if (facility.SideSlopeRatio < 0)
                    {
                        invalidated.Push("Side Slope Ratio must be greater than or equal to zero.");
                    }
                    if (facility.FreeboardIn < 0)
                    {
                        invalidated.Push("Freeboard must be greater than or equal to zero.");
                    }
                    break;

                case FacilityShape.UserDefined:
                    if (facility.SurfaceAreaAtStorageDepth1SqFt < facility.BottomAreaSqFt)
                    {
                        invalidated.Push("Surface Area at Storage Depth 1 must be greater than or equal to the Bottom Area.");
                    }
                    if (facility.HasSecondaryOverflow && (facility.SurfaceAreaAtStorageDepth2SqFt < facility.SurfaceAreaAtStorageDepth1SqFt))
                    {
                        invalidated.Push("Surface Area at Storage Depth 2 must be greater than or equal to the Surface Area at Storage Depth 1.");
                    }
                    break;

                default:
                    break;
                }

                if (facility.BottomAreaSqFt < 0)
                {
                    invalidated.Push("Bottom Area must be greater than or equal to zero.");
                }
                if (facility.StorageDepth1In <= 0)
                {
                    invalidated.Push("Storage Depth 1 must be greater than zero.");
                }

                if (facility.HasRockStorage && (facility.RockStorageBottomAreaSqFt <= 0))
                {
                    invalidated.Push("Rock Storage Bottom Area must be greater than zero.");
                }

                if (facility.HasSecondaryOverflow && (facility.StorageDepth2In <= facility.StorageDepth1In))
                {
                    invalidated.Push("Storage Depth 2 must be greater than or equal to Storage Depth 1.");
                }
                break;
            }

            case FacilityType.PlanterFlat:
            {
                if (facility.BottomAreaSqFt <= 0)
                {
                    invalidated.Push("Bottom Area must be greater than zero.");
                }
                if (facility.StorageDepth1In <= 0)
                {
                    invalidated.Push("Storage Depth 1 must be greater than zero.");
                }

                if (facility.HasRockStorage && (facility.RockStorageBottomAreaSqFt < 0))
                {
                    invalidated.Push("Rock Storage Bottom Area must be greater than or equal to zero.");
                }

                if (facility.HasSecondaryOverflow && (facility.StorageDepth2In <= facility.StorageDepth1In))
                {
                    invalidated.Push("Storage Depth 2 must be greater than Storage Depth 1.");
                }
                break;
            }

            case FacilityType.PlanterSloped:
            case FacilityType.Swale:
            {
                if (facility is SlopedFacility)
                {
                    SlopedFacility slopedFacility = facility as SlopedFacility;
                    foreach (SlopedFacilitySegment segment in slopedFacility.Segments)
                    {
                        if (segment.SegmentLengthFt <= 0)
                        {
                            invalidated.Push("Segment " + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Segment Length must be greater than zero.");
                        }
                        if (segment.CheckDamLengthFt < 0)
                        {
                            invalidated.Push("Segment " + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Check Dam Length must be greater than or equal to zero.");
                        }
                        if (segment.SlopeRatio < 0)
                        {
                            invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Slope must be greater than or equal to zero.");
                        }
                        if (segment.BottomWidthFt < 0)
                        {
                            invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Bottom Width must be greater than or equal to zero.");
                        }
                        if (segment.SideSlopeRightRatio < 0)
                        {
                            invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Side Slope Ratio Right must be greater than or equal to zero.");
                        }
                        if (segment.SideSlopeLeftRatio < 0)
                        {
                            invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Side Slope Ratio Left must be greater than or equal to zero.");
                        }
                        if (segment.DownstreamDepthIn <= 0)
                        {
                            invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Downstream Depth must be greater than zero.");
                        }
                        if (segment.LandscapeWidthFt < segment.DownstreamTopWidthFt)
                        {
                            invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Landscape Width must contain facility segment at Downstream Depth.");
                        }
                        if (facility.HasRockStorage && (segment.RockStorageWidthFt <= 0))
                        {
                            invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                             + " Rock Storage Width must be greater than zero.");
                        }
                    }

                    if (facility.HasSecondaryOverflow && (facility.StorageDepth2In <= slopedFacility.Segments.Last().DownstreamDepthIn))
                    {
                        invalidated.Push("Storage Depth 2 must be greater than the Downstream Depth of the final facility segment.");
                    }
                }
                break;
            }

            default:
                break;
            }

            if (facility.GrowingMediumDepthIn <= 0)
            {
                invalidated.Push("Growing Medium Depth must be greater than zero.");
            }

            if (facility.HasRockStorage)
            {
                if (facility.RockStorageDepthIn <= 0)
                {
                    invalidated.Push("Rock Storage Depth must be greater than zero.");
                }
                if (facility.RockVoidRatio <= 0 || facility.RockVoidRatio >= 1)
                {
                    invalidated.Push("Rock Porosity must be between zero and one.");
                }
            }

            if ((facility.Configuration == FacilityConfiguration.F ||
                 facility.Configuration == FacilityConfiguration.C) &&
                ((facility.StorageDepth3In < 0) || (facility.StorageDepth3In > facility._rockStorageDepthIn)))
            {
                invalidated.Push("Storage Depth 3 must be greater than or equal to zero and less than or equal to the Rock Storage Depth.");
            }
            if (facility.Catchment.DesignInfiltrationNativeInchesPerHour < 0)
            {
                invalidated.Push("Native Infiltration must be greater than or equal to zero.");
            }
            if (facility.Catchment.ImportedMediumInfiltrationInchesPerHour < 0)
            {
                invalidated.Push("Imported Medium Infiltration must be greater than or equal to zero.");
            }


            if (invalidated.Count() > 0)
            {
                message = string.Empty;
                while (invalidated.Count() > 0)
                {
                    message += invalidated.Pop();
                    if (invalidated.Count != 0)
                    {
                        message += System.Environment.NewLine;
                    }
                }
                facility._validConfiguration = false;
                return(false);
            }
            message = "Valid configuration.";

            return(facility._validConfiguration);
        }
示例#2
0
        /// <summary>
        /// Contains algorithims implementing the sizing calculations for various facility configurations
        /// </summary>
        /// <param name="facility"></param>
        /// <param name="category"></param>
        /// <param name="catchment"></param>
        /// <param name="inflowHydrograph"></param>
        /// <returns></returns>
        public static StormEventResults PerformCalculations(Facility facility, HierarchyCategory category, Catchment catchment, Hydrograph inflowHydrograph)
        {
            string message;
              Facility.Validate(facility, Convert.ToInt32(category), out message);

              if (!facility.IsValid)
            throw new ArgumentException("Unable to perform calculations: failed validation with message '" + message + "'");

              double dt = inflowHydrograph.TimeStepMinutes;
              int timeSteps = inflowHydrograph.AsArray().Count();

              double inflowFromRain;
              double inflowVolume;
              double inflowVolumeCummulative = 0;

              double[] surfaceInfiltrationCapacity = new double[timeSteps]; //Column E, aka Percolation Capacity
              double initialInfiltrationToAmendedSoil;
              double[] storedToBeInfiltrated = new double[timeSteps];

              double graphLocator = 0;
              double potentialExtraInfiltration;

              double cumulativeInfiltrationVolume = 0; //Column J

              double additionalInfiltrationFromStorage; //Column K

              double[] totalInfiltrationCapacityToBelowGrade = new double[timeSteps]; //Column L

              double inflowToSurfaceStorageAfterInfiltration; //Column M

              double[] inflowMinusInfiltration = new double[timeSteps]; //Column N

              double surfaceStorageCumulativeVolume = 0; //Column O,P,Q,R combined.

              double[] flowOvertoppingToUnderdrain = new double[timeSteps]; //Column T (or Column W for type E)

              double[] infiltrationToBelowGrade = new double[timeSteps]; //Column Z
              double[] totalFlowToBelowGrade = new double[timeSteps]; //Column AA
              double[] inflowToRockStorage = new double[timeSteps]; //column AB

              double[] totalInfiltrationCapacityToNative = new double[timeSteps]; //Column AE
              double totalInfiltratedToNative = 0;

              double rockStorageCumulativeVolume = 0; //Column AJ

              double[] rockPercentCapacity = new double[timeSteps]; //Column AK/AL for A,B&E facilities; Column AR/AS for C&F;

              double excessRockCumulativeVolume = 0; //Column AM
              double underdrainStorageAreaCumulativeVolume = 0; //Column AR

              double[] aboveGradeStoragePercentCapacity = new double[timeSteps]; //Column AO for A,B facilities; Column S for C,D&F
              double[] aboveGradeSecondaryStoragePercentCapacity = new double[timeSteps]; //Column AO for E facilities

              double[] rockOverflowToEscapeRoute = new double[timeSteps]; //Column AP
              double[] overflowToEscapeRoute = new double[timeSteps]; //Column AQ for A,B,D,E,F facilities; Column AT for C&F

              double nativeInfiltrationRate = facility.NativeSoilInfiltrationCapacityCfs();
              double growingMediumInfiltrationRate = facility.ImportedMediumInfiltrationCapacityCfs();

              //The Lag Index is a property of the growing medium depth and infiltration rate that
              //corresponds to the number of time steps it will take for water to percolate through the
              //growing medium. The infiltration hydrograph to the rock medium is delayed by the lag index.
              //For facility configurations A, B, and E, no lag is applied when the native infiltration rate is less
              //than the growing medium infilration rate.
              double lagFactor =
            (facility.Configuration == FacilityConfiguration.A ||
            facility.Configuration == FacilityConfiguration.B ||
            facility.Configuration == FacilityConfiguration.E) &&
            nativeInfiltrationRate < growingMediumInfiltrationRate ? 0 :
            facility.GrowingMediumPorespace;

              double lagTime = facility.GrowingMediumDepthIn / catchment.ImportedMediumInfiltrationInchesPerHour * 60 * lagFactor;
              int lag = (int)Math.Ceiling(lagTime / inflowHydrograph.TimeStepMinutes); // Rounding up is perfored in the current calculator. This may be unnecessary.

              for (int i = 0; i < timeSteps; i++)
              {
            inflowFromRain = inflowHydrograph.AsArray()[i];
            inflowVolume = inflowFromRain * 600;
            inflowVolumeCummulative += inflowVolume;

            //Facility configurations A,B, and D have rock-influenced surface storage demand. When
            //the rock storage is full, infiltration rates in the growing medium can be limited by
            //infiltration rates of the native soil.
            if (facility.HasRockInfluencedSurfaceStorage && rockPercentCapacity[Math.Max(1, i - 1)] >= 1)
              surfaceInfiltrationCapacity[i] = Math.Min(growingMediumInfiltrationRate, nativeInfiltrationRate);
            else
              surfaceInfiltrationCapacity[i] = growingMediumInfiltrationRate;

            initialInfiltrationToAmendedSoil =
              Math.Min(inflowFromRain, surfaceInfiltrationCapacity[i]);

            storedToBeInfiltrated[i] = Math.Max(inflowFromRain - initialInfiltrationToAmendedSoil, 0) * 600;

            graphLocator =
            storedToBeInfiltrated[i] - storedToBeInfiltrated[Math.Max(1, i - 1)] < 0 ?
            1 : graphLocator;

            potentialExtraInfiltration =
              (surfaceInfiltrationCapacity[i] - initialInfiltrationToAmendedSoil) * graphLocator;

            cumulativeInfiltrationVolume += (potentialExtraInfiltration * 600);

              // Existing spreadsheet rounds up storageToBeInfiltrated to nearest ten,
              // allowing more potentialExtraInfiltration to fill rock storage. This may be unnecessary...
            double storedToBeInfiltratedRoundedUp = Math.Ceiling(storedToBeInfiltrated.Sum()/10)*10;
            double cumulativeInfiltrationVolumeRounded = Math.Round(cumulativeInfiltrationVolume, 10); // Added 6/24/2015 to deal with binary storage of floating point numbers without changing to decimal data type

            additionalInfiltrationFromStorage =
              cumulativeInfiltrationVolumeRounded > storedToBeInfiltratedRoundedUp || cumulativeInfiltrationVolumeRounded > facility.SurfaceCapacityAtDepth1CuFt ?
              0 : potentialExtraInfiltration;

            totalInfiltrationCapacityToBelowGrade[i] = initialInfiltrationToAmendedSoil + additionalInfiltrationFromStorage;

            inflowToSurfaceStorageAfterInfiltration = Math.Max(inflowFromRain - totalInfiltrationCapacityToBelowGrade[i], 0);

            inflowMinusInfiltration[i] = inflowFromRain - surfaceInfiltrationCapacity[i];

            surfaceStorageCumulativeVolume += (inflowMinusInfiltration[i] * 600);

            surfaceStorageCumulativeVolume = Math.Max(surfaceStorageCumulativeVolume, 0);
            surfaceStorageCumulativeVolume = Math.Min(surfaceStorageCumulativeVolume, facility.SurfaceCapacityAtDepth1CuFt);

            flowOvertoppingToUnderdrain[i] =
              surfaceStorageCumulativeVolume < facility.SurfaceCapacityAtDepth1CuFt ?
              0 : inflowToSurfaceStorageAfterInfiltration;

            if (i - lag < 0)
            infiltrationToBelowGrade[i] = totalInfiltrationCapacityToBelowGrade[0];
            else
            infiltrationToBelowGrade[i] = totalInfiltrationCapacityToBelowGrade[i - lag];

            totalFlowToBelowGrade[i] = infiltrationToBelowGrade[i] + flowOvertoppingToUnderdrain[i];

            if (facility.Configuration == FacilityConfiguration.E || facility.Configuration == FacilityConfiguration.F)
              inflowToRockStorage[i] = totalFlowToBelowGrade[i];
            else
              inflowToRockStorage[i] = infiltrationToBelowGrade[i];

            totalInfiltrationCapacityToNative[i] = nativeInfiltrationRate;

            if (rockStorageCumulativeVolume + inflowToRockStorage[i] - totalInfiltrationCapacityToNative[i] < 0)
            totalInfiltratedToNative += rockStorageCumulativeVolume + inflowToRockStorage[i];
            else
            totalInfiltratedToNative += totalInfiltrationCapacityToNative[i];

            rockStorageCumulativeVolume += ((inflowToRockStorage[i] - totalInfiltrationCapacityToNative[i]) * 600);

            excessRockCumulativeVolume = rockStorageCumulativeVolume < facility.RockStorageCapacityCuFt ?
              0 : rockStorageCumulativeVolume - facility.RockStorageCapacityCuFt;

            rockStorageCumulativeVolume = Math.Max(rockStorageCumulativeVolume, 0);

            if (facility.HasRockInfluencedSurfaceStorage)
            {
              aboveGradeStoragePercentCapacity[i] =
              (surfaceStorageCumulativeVolume + excessRockCumulativeVolume) /
              facility.SurfaceCapacityAtDepth1CuFt;
              //E facilities have a secondary storage volume
              if (facility.HasSecondaryOverflow)
              {
            aboveGradeSecondaryStoragePercentCapacity[i] =
            (surfaceStorageCumulativeVolume + excessRockCumulativeVolume) /
            facility.SurfaceCapacityAtDepth2CuFt;
            aboveGradeSecondaryStoragePercentCapacity[i] = Math.Min(aboveGradeSecondaryStoragePercentCapacity[i], 1);
              }
            }
            //C, D, and F facilities have a direct connection from the rock gallery to an overflow,
            //and therefore above grade storage capacity is independent of rock gallery volume
            else
            {
              aboveGradeStoragePercentCapacity[i] =
            surfaceStorageCumulativeVolume / facility.SurfaceCapacityAtDepth1CuFt;
            }
            aboveGradeStoragePercentCapacity[i] = Math.Min(aboveGradeStoragePercentCapacity[i], 1);

            if (facility.HasRockInfluencedSurfaceStorage && !facility.HasSecondaryOverflow) // A, B
            {
            // Added 6/22/2015 to handle case where surface is full, but should overflow more due to limited rock gallery.
            // This will occur only once during a storm, as the next cycle will limit above grade infiltration to the rock gallery
            // and overflow the correct amount.
            double belowGradeInflowMinusInfiltration = inflowToRockStorage[i] - totalInfiltrationCapacityToNative[i];
            if (aboveGradeStoragePercentCapacity[i] == 1 && belowGradeInflowMinusInfiltration > 0 )
                rockOverflowToEscapeRoute[i] = belowGradeInflowMinusInfiltration;
            else
                rockOverflowToEscapeRoute[i] = 0;

            rockPercentCapacity[i] = facility.HasRockStorage ?
              rockStorageCumulativeVolume / facility.RockStorageCapacityCuFt : 1;
            rockPercentCapacity[i] = Math.Min(rockPercentCapacity[i], 1);
            }
            else if (facility.HasSecondaryOverflow) // E
            {
              rockOverflowToEscapeRoute[i] = aboveGradeSecondaryStoragePercentCapacity[i] < 1 ? 0 :
              Math.Max(totalFlowToBelowGrade[i] - facility.NativeSoilInfiltrationCapacityCfs(), 0);

              rockPercentCapacity[i] = facility.HasRockStorage ?
            rockStorageCumulativeVolume / facility.RockStorageCapacityCuFt : 1;
              rockPercentCapacity[i] = Math.Min(rockPercentCapacity[i], 1);
            }
            else if (!facility.HasRockInfluencedSurfaceStorage) // C, D & F
            {
              underdrainStorageAreaCumulativeVolume +=
            ((inflowToRockStorage[i] - totalInfiltrationCapacityToNative[i]) * 600);
              underdrainStorageAreaCumulativeVolume = Math.Max(underdrainStorageAreaCumulativeVolume, 0);
              underdrainStorageAreaCumulativeVolume = Math.Min(underdrainStorageAreaCumulativeVolume, facility.RockStorageCapacityCuFt);

              if ((underdrainStorageAreaCumulativeVolume / facility.RockStorageCapacityCuFt >= 1) || facility.RockStorageCapacityCuFt == 0) // Added facility.RockStorageCapacityCuFt for 0/0 case
            rockOverflowToEscapeRoute[i] = inflowToRockStorage[i] - totalInfiltrationCapacityToNative[i];

              rockPercentCapacity[i] = facility.HasRockStorage ?
            underdrainStorageAreaCumulativeVolume / facility.RockStorageCapacityCuFt : 1;
              rockPercentCapacity[i] = Math.Min(rockPercentCapacity[i], 1);
            }

            if (facility.Configuration == FacilityConfiguration.F // Facility F is different, in that overflow from the surface goes to the subsurface
              || facility.Configuration == FacilityConfiguration.E) // Facility E is strange also, in that the flow overtopping to the underdrain doesn't also go to the escape route.
            overflowToEscapeRoute[i] = excessRockCumulativeVolume > 0 ? rockOverflowToEscapeRoute[i] : 0;
            else
            overflowToEscapeRoute[i] = excessRockCumulativeVolume > 0 ?
                flowOvertoppingToUnderdrain[i] + rockOverflowToEscapeRoute[i] : flowOvertoppingToUnderdrain[i];
              }

              StormEventResults results = new StormEventResults();

              results.PeakSurfaceOverflow = flowOvertoppingToUnderdrain.Max();
              results.PeakOverflow = overflowToEscapeRoute.Max();
              results.OverflowVolume = overflowToEscapeRoute.Sum() * 600;

              results.PercentSurfaceCapacityUsed = aboveGradeStoragePercentCapacity.Max();
              results.PercentRockCapacityUsed = rockPercentCapacity.Max();

              results.InflowVolume = inflowHydrograph.AsArray().Sum() * 600;
              results.PeakInflowRate = inflowHydrograph.AsArray().Max();

              results.AboveGradePrimaryResults.Add(new Hydrograph("Inflow from rain", "cfs", inflowHydrograph.AsArray(), dt));
              results.AboveGradePrimaryResults.Add(new Hydrograph("Infiltration capacity", "cfs", surfaceInfiltrationCapacity, dt));

              switch (facility.Configuration)
              {
              case FacilityConfiguration.A:
              results.AboveGradePrimaryResults.Add(new Hydrograph("Infiltration to native soil", "cfs", infiltrationToBelowGrade, dt));
              results.AboveGradePrimaryResults.Add(new Hydrograph("Overflow to approved discharge", "cfs", overflowToEscapeRoute, dt));
              results.AboveGradeSecondaryResults.Add(new Hydrograph("Percent surface capacity", "%", aboveGradeStoragePercentCapacity, dt));

              results.PercentRockCapacityUsed = -1; // There is no rock gallery.
              break;
              case FacilityConfiguration.B:
              results.AboveGradePrimaryResults.Add(new Hydrograph("Percolation to below grade storage", "cfs", infiltrationToBelowGrade, dt));
              results.AboveGradePrimaryResults.Add(new Hydrograph("Overflow to approved discharge", "cfs", overflowToEscapeRoute, dt));

              results.AboveGradeSecondaryResults.Add(new Hydrograph("Percent surface capacity", "%", aboveGradeStoragePercentCapacity, dt));

              results.BelowGradePrimaryResults.Add(new Hydrograph("Inflow to rock storage", "cfs", infiltrationToBelowGrade, dt));
              results.BelowGradePrimaryResults.Add(new Hydrograph("Infiltration capacity", "cfs", totalInfiltrationCapacityToNative, dt));

              results.BelowGradeSecondaryResults.Add(new Hydrograph("Percent rock capacity", "%", rockPercentCapacity, dt));

              break;
              case FacilityConfiguration.C:
              results.AboveGradePrimaryResults.Add(new Hydrograph("Total flow to below grade storage", "cfs", inflowToRockStorage, dt));
              results.AboveGradePrimaryResults.Add(new Hydrograph("Flow bypassing growing medium", "cfs", flowOvertoppingToUnderdrain, dt));

              results.AboveGradeSecondaryResults.Add(new Hydrograph("Percent surface capacity", "%", aboveGradeStoragePercentCapacity, dt));

              results.BelowGradePrimaryResults.Add(new Hydrograph("Inflow to rock storage", "cfs", inflowToRockStorage, dt));
              results.BelowGradePrimaryResults.Add(new Hydrograph("Infiltration capacity", "cfs", totalInfiltrationCapacityToNative, dt));
              results.BelowGradePrimaryResults.Add(new Hydrograph("Overflow to approved discharge", "cfs", rockOverflowToEscapeRoute, dt));

              results.BelowGradeSecondaryResults.Add(new Hydrograph("Percent rock capacity", "%", rockPercentCapacity, dt));

              break;
              case FacilityConfiguration.D:
              results.AboveGradePrimaryResults.Add(new Hydrograph("Total flow to below grade storage", "cfs", inflowToRockStorage, dt));
              results.AboveGradePrimaryResults.Add(new Hydrograph("Flow bypassing growing medium", "cfs", flowOvertoppingToUnderdrain, dt));

              results.AboveGradeSecondaryResults.Add(new Hydrograph("Percent surface capacity", "%", aboveGradeStoragePercentCapacity, dt));

              break;
              case FacilityConfiguration.E:
              results.AboveGradePrimaryResults.Add(new Hydrograph("Overflow to approved discharge", "cfs", rockOverflowToEscapeRoute, dt));
              results.AboveGradePrimaryResults.Add(new Hydrograph("Total flow to below grade storage", "cfs", inflowToRockStorage, dt));

              results.AboveGradeSecondaryResults.Add(new Hydrograph("Percent surface capacity", "%", aboveGradeSecondaryStoragePercentCapacity, dt));

              results.BelowGradePrimaryResults.Add(new Hydrograph("Inflow to rock storage", "cfs", inflowToRockStorage, dt));
              results.BelowGradePrimaryResults.Add(new Hydrograph("Infiltration capacity", "cfs", totalInfiltrationCapacityToNative, dt));

              results.BelowGradeSecondaryResults.Add(new Hydrograph("Percent rock capacity", "%", rockPercentCapacity, dt));

              results.PercentSurfaceCapacityUsed = aboveGradeSecondaryStoragePercentCapacity.Max();
              break;
              case FacilityConfiguration.F:
              results.AboveGradePrimaryResults.Add(new Hydrograph("Total flow to below grade storage", "cfs", inflowToRockStorage, dt));
              results.AboveGradePrimaryResults.Add(new Hydrograph("Flow bypassing growing medium", "cfs", flowOvertoppingToUnderdrain, dt));

              results.AboveGradeSecondaryResults.Add(new Hydrograph("Percent surface capacity", "%", aboveGradeStoragePercentCapacity, dt));

              results.BelowGradePrimaryResults.Add(new Hydrograph("Inflow to rock storage", "cfs", inflowToRockStorage, dt));
              results.BelowGradePrimaryResults.Add(new Hydrograph("Infiltration capacity", "cfs", totalInfiltrationCapacityToNative, dt));
              results.BelowGradePrimaryResults.Add(new Hydrograph("Overflow to approved discharge", "cfs", rockOverflowToEscapeRoute, dt));

              results.BelowGradeSecondaryResults.Add(new Hydrograph("Percent rock capacity", "%", rockPercentCapacity, dt));

              break;
              }
              return results;
        }
示例#3
0
 /// <summary>
 /// Executes only the SBUH calculations.
 /// </summary>
 /// <param name="catchment">The catchment to calculate the SBUH results.</param>
 /// <returns>A PacResults object which is only minimally populated with results data.
 /// The *PeakInflow and *InflowVolume fields will be populated for each storm event.</returns>
 public static PacResults PerformSbuhCalcs(Catchment catchment)
 {
     Facility dummyFacility = new Facility(FacilityType.Basin, FacilityConfiguration.A, catchment)
       {
       BottomAreaSqFt = 100,
       BottomWidthFt = 10,
       SideSlopeRatio = 3,
       StorageDepth1In = 9,
       GrowingMediumDepthIn = 18,
       FreeboardIn = 3,
       Shape = FacilityShape.Rectangle
       };
       return PerformCalculations(catchment, dummyFacility, 1);
 }
示例#4
0
        /// <summary>
        /// Executes the calculator and returns a PacResults.
        /// </summary>
        /// <param name="catchment">A catchment object defining the hydrologic parameters of the post-developed catchment area to be evaluated.</param>
        /// <param name="preCatchment">A catchment object defining the hydrologic parameters of the pre-developed catchment area to be evaluated.</param>
        /// <param name="facility">A Facility object defining the stormwater management facility to be evaluated.</param>
        /// <param name="category">Identifies the HierarchyCategory the proposed facility will be evaluated against.</param>
        /// <param name="dischargePoint">Identifies the DischargePoint of the proposed facility.</param>
        /// <returns>A PacResults object containing the results of the calculation.</returns>
        internal static PacResults PerformCalculations(Catchment catchment, Catchment preCatchment, Facility facility, HierarchyCategory category, DischargePoint dischargePoint)
        {
            //Define design storms
              RainfallEvent pollutionReduction = RainfallEvent.GetScsOneAEvent("Pollution Reduction", 0.83);
              RainfallEvent twoYear = RainfallEvent.GetScsOneAEvent("Two-Year", 2.4);
              RainfallEvent fiveYear = RainfallEvent.GetScsOneAEvent("Five-Year", 2.9);
              RainfallEvent tenYear = RainfallEvent.GetScsOneAEvent("Ten-Year", 3.4);
              RainfallEvent twentyFiveYear = RainfallEvent.GetScsOneAEvent("Twentyfive-Year", 3.9);

              PacResults results = new PacResults();

              //Calculate hydrographs for the most important design storms
              Hydrograph imperviousHydrographPR = SantaBarbaraUrbanHydrograph.CalculateHydrograph
            (catchment, pollutionReduction);
              Hydrograph imperviousHydrographTwoYear = SantaBarbaraUrbanHydrograph.CalculateHydrograph
            (catchment, twoYear);
              Hydrograph imperviousHydrographFiveYear = SantaBarbaraUrbanHydrograph.CalculateHydrograph
            (catchment, fiveYear);
              Hydrograph imperviousHydrographTenYear = SantaBarbaraUrbanHydrograph.CalculateHydrograph
            (catchment, tenYear);
              Hydrograph imperviousHydrographTwentyfiveYear = SantaBarbaraUrbanHydrograph.CalculateHydrograph
            (catchment, twentyFiveYear);

              results.PollutionReductionResults =
            ReservoirRouter.PerformCalculations(facility, category, catchment, imperviousHydrographPR);
              results.PollutionReductionPeakOverflow = results.PollutionReductionResults.PeakOverflow;
              results.PollutionReductionTotalOverflowVolume = results.PollutionReductionResults.OverflowVolume;
              results.PollutionReductionSurfaceCapacity = results.PollutionReductionResults.PercentSurfaceCapacityUsed;
              results.PollutionReductionPercentRockCapacity = results.PollutionReductionResults.PercentRockCapacityUsed;

              results.PollutionReductionInflowVolume = results.PollutionReductionResults.InflowVolume;
              results.PollutionReductionPeakInflow = results.PollutionReductionResults.PeakInflowRate;

              results.TwoYearResults =
            ReservoirRouter.PerformCalculations(facility, category, catchment, imperviousHydrographTwoYear);
              results.TwoYearPeakOverflow = results.TwoYearResults.PeakOverflow;
              results.TwoYearTotalOverflowVolume = results.TwoYearResults.OverflowVolume;

              results.TwoYearInflowVolume = results.TwoYearResults.InflowVolume;
              results.TwoYearPeakInflow = results.TwoYearResults.PeakInflowRate;

              results.FiveYearResults =
            ReservoirRouter.PerformCalculations(facility, category, catchment, imperviousHydrographFiveYear);
              results.FiveYearPeakOverflow = results.FiveYearResults.PeakOverflow;
              results.FiveYearTotalOverflowVolume = results.FiveYearResults.OverflowVolume;

              results.FiveYearInflowVolume = results.FiveYearResults.InflowVolume;
              results.FiveYearPeakInflow = results.FiveYearResults.PeakInflowRate;

              results.TenYearResults =
            ReservoirRouter.PerformCalculations(facility, category, catchment, imperviousHydrographTenYear);
              results.TenYearPeakOverflow = results.TenYearResults.PeakOverflow;
              results.TenYearTotalOverflowVolume = results.TenYearResults.OverflowVolume;
              results.TenYearSurfaceCapacity = results.TenYearResults.PercentSurfaceCapacityUsed;
              results.TenYearPercentRockCapacity = results.TenYearResults.PercentRockCapacityUsed;

              results.TenYearInflowVolume = results.TenYearResults.InflowVolume;
              results.TenYearPeakInflow = results.TenYearResults.PeakInflowRate;

              results.TwentyfiveYearResults =
            ReservoirRouter.PerformCalculations(facility, category, catchment, imperviousHydrographTwentyfiveYear);
              results.TwentyfiveYearPeakOverflow = results.TwentyfiveYearResults.PeakOverflow;
              results.TwentyfiveYearTotalOverflowVolume = results.TwentyfiveYearResults.OverflowVolume;

              results.TwentyfiveYearInflowVolume = results.TwentyfiveYearResults.InflowVolume;
              results.TwentyfiveYearPeakInflow = results.TwentyfiveYearResults.PeakInflowRate;

              results.TenYearScore = PacScore.NotUsed; // Defaults
              results.FlowControlScore = PacScore.NotUsed;
              results.TwoYearFlowControlScore = PacScore.NotUsed;
              results.FiveYearFlowControlScore = PacScore.NotUsed;
              results.TenYearFlowControlScore = PacScore.NotUsed;
              results.TwentyfiveYearFlowControlScore = PacScore.NotUsed;

              switch (category)
              {
              case HierarchyCategory.Category1:
              case HierarchyCategory.Category2:
              results.TenYearScore = results.TenYearPeakOverflow > 0 ? PacScore.Fail : PacScore.Pass;
              break;
              case HierarchyCategory.Category3:
              //Define preliminary catchment runoff results
              results.PreDevelopedTwoYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, twoYear)).PeakInflowRate;
              results.PreDevelopedFiveYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, fiveYear)).PeakInflowRate;
              results.PreDevelopedTenYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, tenYear)).PeakInflowRate;
              results.PreDevelopedTwentyfiveYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, twentyFiveYear)).PeakInflowRate;

              switch (dischargePoint)
              {
                  case DischargePoint.A:
                      results.FlowControlScore = PacScore.NotUsed;
                      break;
                  case DischargePoint.B:
                      if (results.TwoYearPeakOverflow <= results.PreDevelopedTwoYearPeakInflow / 2)
                          results.TwoYearFlowControlScore = PacScore.Pass;
                      else
                          results.TwoYearFlowControlScore = PacScore.Fail;
                      if (results.FiveYearPeakOverflow <= results.PreDevelopedFiveYearPeakInflow)
                          results.FiveYearFlowControlScore = PacScore.Pass;
                      else
                          results.FiveYearFlowControlScore = PacScore.Fail;
                      if (results.TenYearPeakOverflow <= results.PreDevelopedTenYearPeakInflow)
                          results.TenYearFlowControlScore = PacScore.Pass;
                      else
                          results.TenYearFlowControlScore = PacScore.Fail;
                      if (results.TwentyfiveYearPeakOverflow <= results.PreDevelopedTwentyfiveYearPeakInflow)
                          results.TwentyfiveYearFlowControlScore = PacScore.Pass;
                      else
                          results.TwentyfiveYearFlowControlScore = PacScore.Fail;
                      if (results.TwoYearPeakOverflow <= results.PreDevelopedTwoYearPeakInflow / 2 &&
                              results.FiveYearPeakOverflow <= results.PreDevelopedFiveYearPeakInflow &&
                              results.TenYearPeakOverflow <= results.PreDevelopedTenYearPeakInflow &&
                              results.TwentyfiveYearPeakOverflow <= results.PreDevelopedTwentyfiveYearPeakInflow)
                          results.FlowControlScore = PacScore.Pass;
                      else
                          results.FlowControlScore = PacScore.Fail;
                      break;
                  case DischargePoint.C:
                      if (results.TwoYearPeakOverflow <= results.PreDevelopedTwoYearPeakInflow)
                          results.TwoYearFlowControlScore = PacScore.Pass;
                      else
                          results.TwoYearFlowControlScore = PacScore.Fail;
                      if (results.FiveYearPeakOverflow <= results.PreDevelopedFiveYearPeakInflow)
                          results.FiveYearFlowControlScore = PacScore.Pass;
                      else
                          results.FiveYearFlowControlScore = PacScore.Fail;
                      if (results.TenYearPeakOverflow <= results.PreDevelopedTenYearPeakInflow)
                          results.TenYearFlowControlScore = PacScore.Pass;
                      else
                          results.TenYearFlowControlScore = PacScore.Fail;

                      if (results.TwoYearPeakOverflow <= results.PreDevelopedTwoYearPeakInflow &&
                              results.FiveYearPeakOverflow <= results.PreDevelopedFiveYearPeakInflow &&
                              results.TenYearPeakOverflow <= results.PreDevelopedTenYearPeakInflow)
                          results.FlowControlScore = PacScore.Pass;
                      else
                          results.FlowControlScore = PacScore.Fail;
                      break;
                  default:
                      break;
              }
              break;
              case HierarchyCategory.Category4:
              //Define preliminary catchment runoff results
              results.PreDevelopedTwoYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, twoYear)).PeakInflowRate;
              results.PreDevelopedFiveYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, fiveYear)).PeakInflowRate;
              results.PreDevelopedTenYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, tenYear)).PeakInflowRate;
              results.PreDevelopedTwentyfiveYearPeakInflow = ReservoirRouter.PerformCalculations(facility, category, preCatchment, SantaBarbaraUrbanHydrograph.CalculateHydrograph(preCatchment, twentyFiveYear)).PeakInflowRate;
              if (results.TwentyfiveYearPeakOverflow <= results.PreDevelopedTenYearPeakInflow)
              {
                  results.FlowControlScore = PacScore.Pass;
                  results.TwentyfiveYearFlowControlScore = PacScore.Pass;
              }
              else
              {
                  results.FlowControlScore = PacScore.Fail;
                  results.TwentyfiveYearFlowControlScore = PacScore.Fail;
              }
              break;
              default:
              break;
              }

              results.PollutionReductionScore = results.PollutionReductionResults.PeakSurfaceOverflow > 0 ?
            PacScore.Fail : PacScore.Pass;

              return results;
        }
示例#5
0
        //Category 4 methods don't care about the discharge point
        /// <summary>
        /// Executes the calculator and returns a PacResults. Supports Category 4 facilities.
        /// </summary>
        /// <param name="catchment">A catchment object defining the hydrologic parameters of the catchment area to be evaluated.</param>
        /// <param name="preCatchment">A catchment object defining the hydrologic parameters of the pre-developed catchment area to be evaluated.</param>
        /// <param name="facility">A Facility object defining the stormwater management facility to be evaluated.</param>
        /// <param name="category">Identifies the Hierarchy Category the proposed facility will be evaluated against. Must be an integer from 1 to 4.</param>
        /// <returns>A PacResults object containing the results of the calculation.</returns>
        public static PacResults PerformCalculations(Catchment catchment, Catchment preCatchment, Facility facility, int category)
        {
            HierarchyCategory categoryEnum;

            switch (category)
            {
            case 1:
                categoryEnum = HierarchyCategory.Category1;
                break;
            case 2:
                categoryEnum = HierarchyCategory.Category2;
                break;
            case 3:
                categoryEnum = HierarchyCategory.Category3;
                break;
            case 4:
                categoryEnum = HierarchyCategory.Category4;
                break;
            default:
                throw new ArgumentException("Invalid hierarchy category specified: Must be integer 1 - 4");
            }
            return PerformCalculations(catchment, preCatchment, facility, categoryEnum, DischargePoint.A);
        }
示例#6
0
        //Category 3 methods
        /// <summary>
        /// Executes the calculator and returns a PacResults. Supports Category 3 facilities.
        /// </summary>
        /// <param name="catchment">A catchment object defining the hydrologic parameters of the catchment area to be evaluated.</param>
        /// <param name="preCatchment">A catchment object defining the hydrologic parameters of the pre-developed catchment area to be evaluated.</param>
        /// <param name="facility">A Facility object defining the stormwater management facility to be evaluated.</param>
        /// <param name="category">Identifies the Hierarchy Category the proposed facility will be evaluated against. Must be an integer from 1 to 4.</param>
        /// <param name="dischargePoint">Identifies the DischargePoint of the proposed facility.</param>
        /// <returns>A PacResults object containing the results of the calculation.</returns>
        public static PacResults PerformCalculations(Catchment catchment, Catchment preCatchment, Facility facility, int category, char dischargePoint)
        {
            HierarchyCategory categoryEnum;
            DischargePoint dischargeEnum;

            switch (category)
            {
            case 1:
                categoryEnum = HierarchyCategory.Category1;
                break;
            case 2:
                categoryEnum = HierarchyCategory.Category2;
                break;
            case 3:
                categoryEnum = HierarchyCategory.Category3;
                break;
            case 4:
                categoryEnum = HierarchyCategory.Category4;
                break;
            default:
                throw new ArgumentException("Invalid hierarchy category specified: Must be integer 1 - 4");
            }

            switch (char.ToUpper(dischargePoint))
            {
            case 'A':
                dischargeEnum = DischargePoint.A;
                break;
            case 'B':
                dischargeEnum = DischargePoint.B;
                break;
            case 'C':
                dischargeEnum = DischargePoint.C;
                break;
            default:
                throw new ArgumentException("Invalid discharge point specified: Must be character A-C");
            }
            return PerformCalculations(catchment, preCatchment, facility, categoryEnum, dischargeEnum);
        }
示例#7
0
        private Facility ValidateFacility(string hierarchy, string facilityType, string configuration)
        {
            try
              {
              //Read catchment parameters to local variables
              double imperviousArea = Convert.ToDouble(txtImperviousArea.Text);
              double curveNumber = Convert.ToDouble(txtCurveNumber.Text);
              double preCurveNumber = Convert.ToDouble(txtPreCurveNumber.Text);
              double timeOfConcentration = Convert.ToDouble(txtTimeOfConcentration.Text);
              double nativeInfiltrationRate = Convert.ToDouble(txtNativeSoilInfiltrationRate.Text);
              InfiltrationTestType infiltrationTestType;

              switch (cmbInfiltrationProcedure.SelectedIndex)
              {
              case (0):
                  infiltrationTestType = InfiltrationTestType.OpenPitFallingHead;
                  break;
              case (1):
                  infiltrationTestType = InfiltrationTestType.EncasedFallingHead;
                  break;
              case (2):
                  infiltrationTestType = InfiltrationTestType.DoubleRingInfiltometer;
                  break;
              default:
                  infiltrationTestType = InfiltrationTestType.OpenPitFallingHead;
                  break;
              }

              //Create catchment object local variables
              Catchment catchment = new Catchment("Catchment A")
              {
              ImperviousAreaSquareFeet = imperviousArea,
              AcceptableSeparationFromGroundwater = chkMeetsGroundwaterRequirements.Checked,
              CurveNumber = curveNumber,
              TimeOfConcentrationMinutes = timeOfConcentration,
              TestedInfiltrationRateInchesPerHour = nativeInfiltrationRate,
              InfiltrationTestType = infiltrationTestType
              };

              //Read facility parameters to local variables
              double bottomArea = Convert.ToDouble(txtBottomArea.Text);
              double bottomWidth = Convert.ToDouble(txtBottomWidth.Text);
              double sideSlope = Convert.ToDouble(txtSideSlope.Text);
              double storageDepth1 = Convert.ToDouble(txtStorageDepth1.Text);
              double storageDepth2 = Convert.ToDouble(txtStorageDepth2.Text);
              double storageDepth3 = Convert.ToDouble(txtStorageDepth3.Text);
              double growingMediumDepth = Convert.ToDouble(txtGrowingMediumDepth.Text);
              double freeboardDepth = Convert.ToDouble(txtFreeboardDepth.Text);
              double rockStorageDepth = Convert.ToDouble(txtRockStorageDepth.Text);
              double rockStorageVoidRatio = Convert.ToDouble(txtRockVoidRatio.Text);
              double rockStorageBottomArea = Convert.ToDouble(txtRockStorageBottomArea.Text);
              double surfaceAreaAtStorageDepth1 = Convert.ToDouble(txtSurfaceAreaAtDepth1.Text);
              double bottomPerimiterLength = Convert.ToDouble(txtBottomPerimeterLength.Text);
              double surfaceAreaAtStorageDepth2 = Convert.ToDouble(txtSurfaceAreaAtDepth2.Text);
              FacilityShape shape = GetFacilityShape(cmbFacilityShape.Text);

              FacilityConfiguration config;
              config = (FacilityConfiguration)cmbFacilityConfiguration.Text[0];
              FacilityType type = GetFacilityType(cmbFacilityType.Text);

              Facility facility;

              if (type == FacilityType.Basin || type == FacilityType.PlanterFlat)
              {
              facility = new Facility(type, config, catchment)
              {
                  BottomAreaSqFt = bottomArea,
                  BottomWidthFt = bottomWidth,
                  SideSlopeRatio = sideSlope,
                  StorageDepth1In = storageDepth1,
                  StorageDepth2In = storageDepth2,
                  StorageDepth3In = storageDepth3,
                  GrowingMediumDepthIn = growingMediumDepth,
                  FreeboardIn = freeboardDepth,
                  RockStorageDepthIn = rockStorageDepth,
                  RockVoidRatio = rockStorageVoidRatio,
                  RockStorageBottomAreaSqFt = rockStorageBottomArea,
                  SurfaceAreaAtStorageDepth1SqFt = surfaceAreaAtStorageDepth1,
                  BottomPerimeterLengthFt = bottomPerimiterLength,
                  SurfaceAreaAtStorageDepth2SqFt = surfaceAreaAtStorageDepth2,
                  Shape = shape
              };
              }
              else //Write sloped facility parameters from UI to facility object and verify results
              {
              //ShowSlopedFacilityWS();
              List<SlopedFacilitySegment> segments;
              if (_sfws != null)
              {
                  if (_sfws.Segments != null)
                      segments = _sfws.Segments;
                  else
                      segments = new List<SlopedFacilitySegment>();
              }
              else
                  segments = new List<SlopedFacilitySegment>();

              facility = new SlopedFacility(type, config, catchment, segments)
              {
                  BottomAreaSqFt = bottomArea,
                  BottomWidthFt = bottomWidth,
                  SideSlopeRatio = sideSlope,
                  StorageDepth1In = storageDepth1,
                  StorageDepth2In = storageDepth2,
                  StorageDepth3In = storageDepth3,
                  GrowingMediumDepthIn = growingMediumDepth,
                  FreeboardIn = freeboardDepth,
                  RockStorageDepthIn = rockStorageDepth,
                  RockVoidRatio = rockStorageVoidRatio,
                  RockStorageBottomAreaSqFt = rockStorageBottomArea,
                  SurfaceAreaAtStorageDepth1SqFt = surfaceAreaAtStorageDepth1,
                  Shape = shape
              };
              }

            int hierarchyNumber = Convert.ToInt32(hierarchy);
            HierarchyCategory hierarchyCategory = (HierarchyCategory)hierarchyNumber;

            string message;
            _validFacility = Facility.Validate(facility, hierarchyNumber, out message);

            ToggleUIParameters(facility);
            if (!_validFacility)
            DisableUI(message);

            return facility;
              }
              catch (Exception ex)
              {
            MessageBox.Show("Error with facility parameters: " + ex.Message);
            return null;
              }
        }
示例#8
0
        private void ToggleUIParameters(Facility facility)
        {
            bool sloped = facility.Type == FacilityType.PlanterSloped ||
            facility.Type == FacilityType.Swale;

              txtRockStorageDepth.Enabled = facility.HasRockStorage;
              txtRockVoidRatio.Enabled = facility.HasRockStorage;

              txtRockStorageBottomArea.Enabled = facility.HasCustomRockStorageBottomArea;
              if (facility.HasCustomRockStorageBottomArea)
            txtRockStorageBottomArea.Text = facility.RockStorageBottomAreaSqFt.ToString();

              txtFreeboardDepth.Enabled = facility.SpecifyFreeboard;

              txtStorageDepth1.Enabled = !sloped; //Added per conversation with Richard Davies 10/2/14

              txtStorageDepth2.Enabled = facility.HasSecondaryOverflow;

              if (facility.HasRockStorage)
              {
              txtStorageDepth3.Enabled = !facility.HasRockInfluencedSurfaceStorage ||
            (sloped && facility.Configuration == FacilityConfiguration.C); //Added per conversation with Richard Davies 10/2/14
              }
              else
              txtStorageDepth3.Enabled = false;

              txtSideSlope.Enabled = facility.SpecifySideSlope;

              cmbFacilityShape.Enabled = facility.AllowShapeSelection;

              txtSurfaceAreaAtDepth1.Enabled = facility.Shape == FacilityShape.UserDefined;
              txtBottomPerimeterLength.Enabled = facility.Shape == FacilityShape.Amoeba;
              txtSurfaceAreaAtDepth2.Enabled = facility.Shape == FacilityShape.UserDefined && facility.Configuration == FacilityConfiguration.E;

              btnShowSFWS.Enabled = sloped;
              txtRockStorageBottomArea.Enabled = !sloped && facility.HasCustomRockStorageBottomArea;
              txtBottomArea.Enabled = !sloped;

              txtBottomWidth.Enabled = !sloped && facility.Shape != FacilityShape.Amoeba && facility.Shape != FacilityShape.UserDefined;

              btnCalculate.Enabled = true;
              textBox1.ForeColor = SystemColors.WindowText;
              textBox1.Font = new Font(textBox1.Font, FontStyle.Regular);

              textBox1.Text = "Valid facility configuration";
        }
示例#9
0
        /// <summary>
        /// Performs checks to determine whether a Facility has required parameters assigned, and that
        /// all parameters are valid.
        /// </summary>
        /// <param name="facility">The Facility to validate</param>
        /// <param name="category">The Hierarchy Category the facility will be validated against</param>
        /// <param name="message">A message indicating the first error found in an invalid facility,
        /// or "Valid Configuration" if the facility is valid.</param>
        /// <returns>True if the facility parameters are valid, otherwise false</returns>
        public static bool Validate(Facility facility, int category, out string message)
        {
            facility._validConfiguration = true;

              switch (category)
              {
            case 1:
              if (facility._configuration != FacilityConfiguration.A
            && facility._configuration != FacilityConfiguration.B)
              {
            message = "Only Configuration A or B may be used for Category 1";
            facility._validConfiguration = false;
            return false;
              }
              break;
            case 2:
              break;
            case 3:
              if (facility._configuration == FacilityConfiguration.E
            || facility._configuration == FacilityConfiguration.F)
              {
            message = "Configuration E and F may not be used for Category 3";
            facility._validConfiguration = false;
            return false;
              }
              break;
            case 4:
              if (facility._configuration == FacilityConfiguration.E
            || facility._configuration == FacilityConfiguration.F)
              {
            message = "Configuration E and F may not be used for Category 4";
            facility._validConfiguration = false;
            return false;
              }
              break;
            default:
              message = "Unknown configuration, unable to validate facility";
              facility._validConfiguration = false;
              return false;
              }

              Stack<string> invalidated = new Stack<string>();

              switch (facility.Type)
              {
              case FacilityType.Basin:
              {
                  switch (facility.Shape)
                  {
                      case FacilityShape.Rectangle:
                          if (facility.BottomWidthFt < 0)
                              invalidated.Push("Bottom Width must be greater than or equal to zero.");
                          if (facility.SideSlopeRatio < 0)
                              invalidated.Push("Side Slope Ratio must be greater than or equal to zero.");
                          if (facility.FreeboardIn < 0)
                              invalidated.Push("Freeboard must be greater than or equal to zero.");
                          break;
                      case FacilityShape.Amoeba:
                          if (facility.BottomPerimeterLengthFt < Math.Sqrt(4 * facility.BottomAreaSqFt * Math.PI))
                              invalidated.Push("Bottom Perimeter Length must be greater than or equal to the circumference of a circle with area equal to bottom area.");
                          if (facility.SideSlopeRatio < 0)
                              invalidated.Push("Side Slope Ratio must be greater than or equal to zero.");
                          if (facility.FreeboardIn < 0)
                              invalidated.Push("Freeboard must be greater than or equal to zero.");
                          break;
                      case FacilityShape.UserDefined:
                          if (facility.SurfaceAreaAtStorageDepth1SqFt < facility.BottomAreaSqFt)
                              invalidated.Push("Surface Area at Storage Depth 1 must be greater than or equal to the Bottom Area.");
                          if (facility.FreeboardIn < 0)
                              invalidated.Push("Freeboard must be greater than or equal to zero.");
                          if (facility.HasSecondaryOverflow && (facility.SurfaceAreaAtStorageDepth2SqFt < facility.SurfaceAreaAtStorageDepth1SqFt))
                              invalidated.Push("Surface Area at Storage Depth 2 must be greater than or equal to the Surface Area at Storage Depth 1.");
                          break;
                      default:
                          break;
                  }

                  if (facility.BottomAreaSqFt < 0)
                      invalidated.Push("Bottom Area must be greater than or equal to zero.");
                  if (facility.StorageDepth1In <= 0)
                      invalidated.Push("Storage Depth 1 must be greater than zero.");

                  if (facility.HasRockStorage && (facility.RockStorageBottomAreaSqFt <= 0))
                      invalidated.Push("Rock Storage Bottom Area must be greater than zero.");

                  if (facility.HasSecondaryOverflow && (facility.StorageDepth2In <= facility.StorageDepth1In))
                      invalidated.Push("Storage Depth 2 must be greater than or equal to Storage Depth 1.");
                  break;
              }
              case FacilityType.PlanterFlat:
              {
                  if (facility.BottomAreaSqFt <= 0)
                      invalidated.Push("Bottom Area must be greater than zero.");
                  if (facility.StorageDepth1In <= 0)
                      invalidated.Push("Storage Depth 1 must be greater than zero.");

                  if (facility.HasRockStorage && (facility.RockStorageBottomAreaSqFt < 0))
                      invalidated.Push("Rock Storage Bottom Area must be greater than or equal to zero.");

                  if (facility.HasSecondaryOverflow && (facility.StorageDepth2In <= facility.StorageDepth1In))
                      invalidated.Push("Storage Depth 2 must be greater than Storage Depth 1.");
                  break;
              }
              case FacilityType.PlanterSloped:
              case FacilityType.Swale:
              {
                  if (facility is SlopedFacility)
                  {
                      SlopedFacility slopedFacility = facility as SlopedFacility;
                      foreach (SlopedFacilitySegment segment in slopedFacility.Segments)
                      {
                          if (segment.SegmentLengthFt <= 0)
                              invalidated.Push("Segment " + (slopedFacility.Segments.IndexOf(segment)+1).ToString()
                                  + " Segment Length must be greater than zero.");
                          if (segment.CheckDamLengthFt < 0)
                              invalidated.Push("Segment " + (slopedFacility.Segments.IndexOf(segment)+1).ToString()
                                  + " Check Dam Length must be greater than or equal to zero.");
                          if (segment.SlopeRatio < 0)
                              invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment)+1).ToString()
                                  + " Slope must be greater than or equal to zero.");
                          if (segment.BottomWidthFt < 0)
                              invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                  + " Bottom Width must be greater than or equal to zero.");
                          if (segment.SideSlopeRightRatio < 0)
                              invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                  + " Side Slope Ratio Right must be greater than or equal to zero.");
                          if (segment.SideSlopeLeftRatio < 0)
                              invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                  + " Side Slope Ratio Left must be greater than or equal to zero.");
                          if (segment.DownstreamDepthIn <= 0)
                              invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                  + " Downstream Depth must be greater than zero.");
                          if (segment.LandscapeWidthFt < segment.DownstreamTopWidthFt)
                              invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                  + " Landscape Width must contain facility segment at Downstream Depth.");
                          if (facility.HasRockStorage && (segment.RockStorageWidthFt <= 0))
                              invalidated.Push("Segment #" + (slopedFacility.Segments.IndexOf(segment) + 1).ToString()
                                  + " Rock Storage Width must be greater than zero.");
                      }

                      if (facility.HasSecondaryOverflow && (facility.StorageDepth2In <= slopedFacility.Segments.Last().DownstreamDepthIn))
                          invalidated.Push("Storage Depth 2 must be greater than the Downstream Depth of the final facility segment.");
                  }
                  break;
              }
              default:
              break;
              }

              if (facility.GrowingMediumDepthIn <= 0)
              invalidated.Push("Growing Medium Depth must be greater than zero.");

              if (facility.HasRockStorage)
              {
              if (facility.RockStorageDepthIn <= 0)
            invalidated.Push("Rock Storage Depth must be greater than zero.");
              if (facility.RockVoidRatio <= 0 || facility.RockVoidRatio >= 1)
              invalidated.Push("Rock Porosity must be between zero and one.");
              }

              if ((facility.Configuration == FacilityConfiguration.F
              || facility.Configuration == FacilityConfiguration.C)
              && ((facility.StorageDepth3In < 0) || (facility.StorageDepth3In > facility._rockStorageDepthIn)))
              invalidated.Push("Storage Depth 3 must be greater than or equal to zero and less than or equal to the Rock Storage Depth.");
            if(facility.Catchment.DesignInfiltrationNativeInchesPerHour < 0)
            invalidated.Push("Native Infiltration must be greater than or equal to zero.");
            if (facility.Catchment.ImportedMediumInfiltrationInchesPerHour < 0)
            invalidated.Push("Imported Medium Infiltration must be greater than or equal to zero.");

            if(invalidated.Count()>0)
            {
            message = string.Empty;
            while (invalidated.Count() > 0)
            {
                message += invalidated.Pop();
                if (invalidated.Count != 0)
                    message += System.Environment.NewLine;
            }
            facility._validConfiguration = false;
            return false;
            }
              message = "Valid configuration.";

              return facility._validConfiguration;
        }