示例#1
0
        /// <summary>
        /// Finds a path from any of the points in startPointList to goal, such that the path has no links that are steeper up than maxIncline
        /// nor steeper down than maxDecline.
        /// </summary>
        /// <returns>The path.</returns>
        /// <param name="startPointList">PointWithDistance structs for starting area</param>
        /// <param name="goalPoint">map indices of point to go to</param>
        List <PointWithDistance> FindPath(List <PointWithDistance> startPointList, InclineIndexPoint goalPoint, float maxIncline, float maxDecline)
        {
            List <PointWithDistance> path = new List <PointWithDistance>();

            HeapQueue <PointWithDistance> openHeap = new HeapQueue <PointWithDistance>();

            Dictionary <InclineIndexPoint, float> bestDistanceDict = new Dictionary <InclineIndexPoint, float>();

            Dictionary <InclineIndexPoint, PointWithDistance> bestPrevPoint = new Dictionary <InclineIndexPoint, PointWithDistance>();

            Point goalMapPoint = InclineIndicesToMapIndices(goalPoint);

            Vector3 worldGoalPoint = mapMetaData.getWorldPos(goalMapPoint);

            for (int startIndex = 0; startIndex < startPointList.Count; ++startIndex)
            {
                PointWithDistance pwd = startPointList[startIndex];
                openHeap.Push(pwd);
                bestDistanceDict[pwd.point] = pwd.distance;
                bestPrevPoint[pwd.point]    = null;
            }

            float             bestPathLength = -1;
            PointWithDistance bestGoalPoint  = new PointWithDistance(new InclineIndexPoint(-1024, -1024),
                                                                     float.MaxValue,
                                                                     float.MaxValue);

            while (!openHeap.IsEmpty())
            {
                PointWithDistance ptWithDist = openHeap.PopMinimum();

                if ((bestPathLength > 0) && ((ptWithDist.estimatedTotalDistance > bestPathLength) || TAKE_FIRST_PATH))
                {
                    break;
                }

                int[] xOffsets = { 1, 0, -1, 0 };
                int[] zOffsets = { 0, 1, 0, -1 };

                InclineMeshNode node = nodes[ptWithDist.point.X, ptWithDist.point.Z];

                Vector3 worldNodePoint = InclineIndicesToWorldPoint(ptWithDist.point);

                for (int direction = 0; direction < 4; ++direction)
                {
                    int dx = xOffsets[direction];
                    int dz = zOffsets[direction];

                    int nx = ptWithDist.point.X + dx;
                    int nz = ptWithDist.point.Z + dz;

                    InclineIndexPoint neighborPoint    = new InclineIndexPoint(nx, nz);
                    Point             mapNeighborPoint = InclineIndicesToMapIndices(neighborPoint);

                    if ((!mapMetaData.IsWithinBounds(mapNeighborPoint)) || (node.NeighborLinks[direction] == null))
                    {
                        continue;
                    }

                    Vector3 worldNeighborPoint = InclineIndicesToWorldPoint(neighborPoint);

                    for (int linkIndex = 0; linkIndex < node.NeighborLinks[direction].Count; ++linkIndex)
                    {
                        Debug.DrawLine(worldNodePoint, worldNeighborPoint, Color.yellow, 15.0f);

                        InclineLinkData link = node.NeighborLinks[direction][linkIndex];

                        if ((link.declineAsFloat() > maxDecline) || (link.inclineAsFloat() > maxIncline))
                        {
                            continue;
                        }

                        float linkDistance = (worldNeighborPoint - worldNodePoint).magnitude;

                        float totalDistance = ptWithDist.distance + linkDistance;

                        if ((bestPathLength >= 0) &&
                            (totalDistance >= bestPathLength))
                        {
                            continue;
                        }

                        if ((!bestDistanceDict.ContainsKey(neighborPoint)) ||
                            (totalDistance < bestDistanceDict[neighborPoint]))
                        {
                            bestDistanceDict[neighborPoint] = totalDistance;
                            bestPrevPoint[neighborPoint]    = ptWithDist;

                            float distanceToGoal = (worldNeighborPoint - worldGoalPoint).magnitude;

                            if (neighborPoint.Equals(goalPoint))
                            {
                                if ((bestPathLength < 0) ||
                                    (totalDistance < bestPathLength))
                                {
                                    bestPathLength = totalDistance;
                                    bestGoalPoint  = new PointWithDistance(neighborPoint, totalDistance, 0.0f);
                                }
                            }
                            else
                            {
                                openHeap.Push(new PointWithDistance(neighborPoint, totalDistance, totalDistance + distanceToGoal));
                            }
                        }
                        break;
                    }
                }
            }

            if (bestPathLength >= 0)
            {
                PointWithDistance p = bestGoalPoint;
                path.Add(p);
                while (bestPrevPoint.ContainsKey(p.point))
                {
                    PointWithDistance prevPoint = bestPrevPoint[p.point];
                    if ((prevPoint == null) || (path.Contains(prevPoint)))
                    {
                        break;
                    }
                    path.Insert(0, prevPoint);
                    p = prevPoint;
                }
            }

            return(path);
        }
示例#2
0
        void processNode(InclineMeshData meshData, MapMetaData mapMetaData, InclineIndexPoint inclinePoint)
        {
            Point startPointMapIndices = meshData.InclineIndicesToMapIndices(inclinePoint);

            if (!mapMetaData.IsWithinBounds(startPointMapIndices))
            {
                return;
            }

            Dictionary <Point, List <InclineLinkData> > bestPaths = new Dictionary <Point, List <InclineLinkData> >();
            List <InclineLinkData> starterList = new List <InclineLinkData>();

            starterList.Add(new InclineLinkData());

            bestPaths[startPointMapIndices] = starterList;

            List <Point> openPoints = new List <Point>();

            openPoints.Add(startPointMapIndices);

            float maximumPathDistance = overshootMultiplier * getDistanceBetweenTwoInclinePoints(meshData, mapMetaData);

            while (openPoints.Count > 0)
            {
                Point p = openPoints[0];
                openPoints.RemoveAt(0);

                //Debug.LogFormat("dequeueing {0} {1}", p.X, p.Z);

                for (int d = 0; d < 4; ++d)
                {
                    int dx = 0;
                    int dz = 0;

                    switch (d)
                    {
                    case 0: dx = 1; dz = 0; break;

                    case 1: dx = 0; dz = 1; break;

                    case 2: dx = -1; dz = 0; break;

                    case 3: dx = 0; dz = -1; break;

                    default: Debug.LogError("invalid direction: " + d); continue;
                    }

                    Point newPoint = new Point(p.X + dx, p.Z + dz);

                    if ((!mapMetaData.IsWithinBounds(newPoint)) ||
                        (!mapMetaData.IsWithinBounds(p)))
                    {
                        continue;
                    }

                    float incline, decline, distance;
                    getIncrementalInclines(mapMetaData, p, newPoint, out incline, out decline, out distance);

                    bool pointIsDirty = false;

                    for (int pathIndex = 0; pathIndex < bestPaths[p].Count; pathIndex++)
                    {
                        InclineLinkData pathSoFar = bestPaths[p][pathIndex];

                        float oldFloatIncline  = pathSoFar.inclineAsFloat();
                        float oldFloatDecline  = pathSoFar.declineAsFloat();
                        float oldFloatDistance = pathSoFar.distanceAsFloat();

                        float newFloatIncline  = Mathf.Max(incline, oldFloatIncline);
                        float newFloatDecline  = Mathf.Max(decline, oldFloatDecline);
                        float newFloatDistance = oldFloatDistance + distance;

                        // if the distance is too far, also stop recursing.
                        if (newFloatDistance > maximumPathDistance)
                        {
                            continue;
                        }

                        InclineLinkData newPathLinkData = new InclineLinkData(newFloatIncline, newFloatDecline, newFloatDistance);

                        bool foundAnyBetter         = false;
                        int  iAmBetterThanThisIndex = -1;

                        if (bestPaths.ContainsKey(newPoint))
                        {
                            for (int existingPathIndex = 0; existingPathIndex < bestPaths[newPoint].Count; ++existingPathIndex)
                            {
                                InclineLinkData existingPath = bestPaths[newPoint][existingPathIndex];
                                // If an existing path is as good or better than us, then stop recursing.

                                if (existingPath.Equals(newPathLinkData) ||
                                    existingPath.Dominates(newPathLinkData))
                                {
                                    foundAnyBetter = true;
                                    break;
                                }

                                if (newPathLinkData.Dominates(existingPath))
                                {
                                    iAmBetterThanThisIndex = existingPathIndex;
                                    break;
                                }
                            }
                        }
                        else
                        {
                            bestPaths[newPoint] = new List <InclineLinkData>();
                        }

                        if (iAmBetterThanThisIndex >= 0)
                        {
                            // found a better path than an existing one, remove the old one and recompute.
                            bestPaths[newPoint][iAmBetterThanThisIndex] = newPathLinkData;
                            pointIsDirty = true;
                        }
                        else if (!foundAnyBetter)
                        {
                            // Otherwise, add this path to the list of paths, and recurse.

                            bestPaths[newPoint].Add(newPathLinkData);
                            pointIsDirty = true;
                        }
                    }
                    if (pointIsDirty)
                    {
                        openPoints.Add(newPoint);
                    }
                }
            }

            meshData.nodes[inclinePoint.X, inclinePoint.Z] = new InclineMeshNode();

            // now, grab the links from our neighbors
            for (int d = 0; d < 4; ++d)
            {
                int dx = 0;
                int dz = 0;

                switch (d)
                {
                case 0: dx = 1; dz = 0; break;

                case 1: dx = 0; dz = 1; break;

                case 2: dx = -1; dz = 0; break;

                case 3: dx = 0; dz = -1; break;

                default: Debug.LogError("invalid direction: " + d); continue;
                }

                InclineIndexPoint neighborInclinePoint = new InclineIndexPoint(inclinePoint.X + dx, inclinePoint.Z + dz);
                Point             neighborMapIndices   = meshData.InclineIndicesToMapIndices(neighborInclinePoint);

                if (!mapMetaData.IsWithinBounds(neighborMapIndices))
                {
                    continue;
                }

                if (bestPaths.ContainsKey(neighborMapIndices))
                {
                    /*
                     * foreach (InclineLinkData ild in bestPaths[neighborWorldPoint])
                     * {
                     *      //Debug.LogFormat("from {0} {1} in dir {2}: {3}/{4}/{5}", inclinePoint.X, inclinePoint.Z, d, ild.incline, ild.decline, ild.distance);
                     * }
                     */
                    meshData.nodes[inclinePoint.X, inclinePoint.Z].NeighborLinks[d] = bestPaths[neighborMapIndices];

                    // draw debug
                    //Debug.DrawLine(meshData.InclineIndicesToWorldPoint(inclinePoint), meshData.mapMetaData.getWorldPos(neighborMapIndices), Color.white, 25.0f);
                }
            }
        }