public void Visit(JsCallNode node) { if (node != null) { if (node.InBrackets) { // if this is a member-bracket operation, then *we* don't need parens, but we shoul // recurse the function in case something in there does node.Function.Accept(this); } else if (!node.IsConstructor) { // we have parens for our call arguments, so we definitely // need to be wrapped and there's no need to recurse m_needsParens = true; } else { // we are a new-operator - if we have any arguments then we're good to go // because those arguments will be associated with us, not the outer new. // but if we don't have any arguments, we might need to be wrapped in parens // so any outer arguments don't get associated with us if (node.Arguments == null || node.Arguments.Count == 0) { m_needsParens = !m_outerHasNoArguments; } } } else { // shouldn't happen, but we're a call so let's wrap in parens m_needsParens = true; } }
public void Visit(JsCallNode node) { // if there's a function node, recurse into it if (node != null && node.Function != null) { node.Function.Accept(this); } }
public void Visit(JsCallNode node) { if (node != null) { if (node.Function != null) { node.Function.Accept(this); } if (node.Arguments != null) { node.Arguments.Accept(this); } node.Index = NextOrderIndex; } }
public void Visit(JsCallNode node) { // only interested if the index is greater than zero, since the zero-index // needs to be a lookup. Also needs to be a brackets-call, and there needs to // be a single argument. if (node != null && m_index > 0 && node.InBrackets && node.Arguments != null && node.Arguments.Count == 1) { // better be a constant wrapper, too var constantWrapper = node.Arguments[0] as JsConstantWrapper; if (constantWrapper != null && constantWrapper.PrimitiveType == JsPrimitiveType.String) { // check the value of the constant wrapper against the current part if (string.CompareOrdinal(constantWrapper.Value.ToString(), m_parts[m_index--]) == 0) { // match! recurse the function after decrementing the index node.Function.Accept(this); } } } }
public void Visit(JsCallNode node) { // invalid! ignore IsValid = false; }
//--------------------------------------------------------------------------------------- // MemberExpression // // Accessor : // <empty> | // Arguments Accessor // '[' Expression ']' Accessor | // '.' Identifier Accessor | // // Don't have this function throwing an exception without checking all the calling sites. // There is state in instance variable that is saved on the calling stack in some function // (i.e ParseFunction and ParseClass) and you don't want to blow up the stack //--------------------------------------------------------------------------------------- private JsAstNode MemberExpression(JsAstNode expression, List<JsContext> newContexts) { for (; ; ) { m_noSkipTokenSet.Add(NoSkipTokenSet.s_MemberExprNoSkipTokenSet); try { switch (m_currentToken.Token) { case JsToken.LeftParenthesis: JsAstNodeList args = null; RecoveryTokenException callError = null; m_noSkipTokenSet.Add(NoSkipTokenSet.s_ParenToken); try { args = ParseExpressionList(JsToken.RightParenthesis); } catch (RecoveryTokenException exc) { args = (JsAstNodeList)exc._partiallyComputedNode; if (IndexOfToken(NoSkipTokenSet.s_ParenToken, exc) == -1) callError = exc; // thrown later on } finally { m_noSkipTokenSet.Remove(NoSkipTokenSet.s_ParenToken); } expression = new JsCallNode(expression.Context.CombineWith(args.Context), this) { Function = expression, Arguments = args, InBrackets = false }; if (null != newContexts && newContexts.Count > 0) { (newContexts[newContexts.Count - 1]).UpdateWith(expression.Context); if (!(expression is JsCallNode)) { expression = new JsCallNode(newContexts[newContexts.Count - 1], this) { Function = expression, Arguments = new JsAstNodeList(CurrentPositionContext(), this) }; } else { expression.Context = newContexts[newContexts.Count - 1]; } ((JsCallNode)expression).IsConstructor = true; newContexts.RemoveAt(newContexts.Count - 1); } if (callError != null) { callError._partiallyComputedNode = expression; throw callError; } GetNextToken(); break; case JsToken.LeftBracket: m_noSkipTokenSet.Add(NoSkipTokenSet.s_BracketToken); try { // // ROTOR parses a[b,c] as a call to a, passing in the arguments b and c. // the correct parse is a member lookup on a of c -- the "b,c" should be // a single expression with a comma operator that evaluates b but only // returns c. // So we'll change the default behavior from parsing an expression list to // parsing a single expression, but returning a single-item list (or an empty // list if there is no expression) so the rest of the code will work. // //args = ParseExpressionList(JSToken.RightBracket); GetNextToken(); args = new JsAstNodeList(CurrentPositionContext(), this); JsAstNode accessor = ParseExpression(); if (accessor != null) { args.Append(accessor); } } catch (RecoveryTokenException exc) { if (IndexOfToken(NoSkipTokenSet.s_BracketToken, exc) == -1) { if (exc._partiallyComputedNode != null) { exc._partiallyComputedNode = new JsCallNode(expression.Context.CombineWith(m_currentToken.Clone()), this) { Function = expression, Arguments = (JsAstNodeList)exc._partiallyComputedNode, InBrackets = true }; } else { exc._partiallyComputedNode = expression; } throw; } else args = (JsAstNodeList)exc._partiallyComputedNode; } finally { m_noSkipTokenSet.Remove(NoSkipTokenSet.s_BracketToken); } expression = new JsCallNode(expression.Context.CombineWith(m_currentToken.Clone()), this) { Function = expression, Arguments = args, InBrackets = true }; // there originally was code here in the ROTOR sources that checked the new context list and // changed this member call to a constructor call, effectively combining the two. I believe they // need to remain separate. // remove the close bracket token GetNextToken(); break; case JsToken.AccessField: JsConstantWrapper id = null; JsContext nameContext = m_currentToken.Clone(); GetNextToken(); if (JsToken.Identifier != m_currentToken.Token) { string identifier = JsKeyword.CanBeIdentifier(m_currentToken.Token); if (null != identifier) { // don't report an error here -- it's actually okay to have a property name // that is a keyword which is okay to be an identifier. For instance, // jQuery has a commonly-used method named "get" to make an ajax request //ForceReportInfo(JSError.KeywordUsedAsIdentifier); id = new JsConstantWrapper(identifier, JsPrimitiveType.String, m_currentToken.Clone(), this); } else if (JsScanner.IsValidIdentifier(m_currentToken.Code)) { // it must be a keyword, because it can't technically be an identifier, // but it IS a valid identifier format. Throw a warning but still // create the constant wrapper so we can output it as-is ReportError(JsError.KeywordUsedAsIdentifier, m_currentToken.Clone(), true); id = new JsConstantWrapper(m_currentToken.Code, JsPrimitiveType.String, m_currentToken.Clone(), this); } else { ReportError(JsError.NoIdentifier); SkipTokensAndThrow(expression); } } else { id = new JsConstantWrapper(m_scanner.Identifier, JsPrimitiveType.String, m_currentToken.Clone(), this); } GetNextToken(); expression = new JsMember(expression.Context.CombineWith(id.Context), this) { Root = expression, Name = id.Context.Code, NameContext = nameContext.CombineWith(id.Context) }; break; default: if (null != newContexts) { while (newContexts.Count > 0) { (newContexts[newContexts.Count - 1]).UpdateWith(expression.Context); expression = new JsCallNode(newContexts[newContexts.Count - 1], this) { Function = expression, Arguments = new JsAstNodeList(CurrentPositionContext(), this) }; ((JsCallNode)expression).IsConstructor = true; newContexts.RemoveAt(newContexts.Count - 1); } } return expression; } } catch (RecoveryTokenException exc) { if (IndexOfToken(NoSkipTokenSet.s_MemberExprNoSkipTokenSet, exc) != -1) expression = exc._partiallyComputedNode; else { Debug.Assert(exc._partiallyComputedNode == expression); throw; } } finally { m_noSkipTokenSet.Remove(NoSkipTokenSet.s_MemberExprNoSkipTokenSet); } } }
public void Visit(JsCallNode node) { if (node != null) { var symbol = StartSymbol(node); var isNoIn = m_noIn; m_noIn = false; if (node.IsConstructor) { Output("new"); MarkSegment(node, null, node.Context); SetContextOutputPosition(node.Context); m_startOfStatement = false; } if (node.Function != null) { var needsParens = node.Function.Precedence < node.Precedence; // if we think we don't need parens, we need to make one more check: // if the function is a new operator with no argument list, then we // need to wrap it so our argument list doesn't get mistaken for the new-operator's // argument list if (!needsParens) { // because if the new-operator associates to the right and the ()-operator associates // to the left, we need to be careful that we don't change the precedence order when the // function of a new operator is itself a call or contains a call. In that case, the call will have it's own // parameters (and therefore parentheses) that will need to be associated with the call // and NOT the new -- the call will need to be surrounded with parens to keep that association. // (if we are already going to wrap it in parens, no need to check further) if (node.IsConstructor) { // check the constructor function of our new operator to see if // it requires parens so we don't get the precedence all screwed up. // pass in whether or not WE have any arguments -- will make a difference when we have embedded // constructors that don't have arguments needsParens = JsNewParensVisitor.NeedsParens(node.Function, node.Arguments == null || node.Arguments.Count == 0); } else { var newExpression = node.Function as JsCallNode; if (newExpression != null && newExpression.IsConstructor && (newExpression.Arguments == null || newExpression.Arguments.Count == 0)) { needsParens = true; } } } AcceptNodeWithParens(node.Function, needsParens); if (!node.IsConstructor) { SetContextOutputPosition(node.Context); } } if (!node.IsConstructor || node.Arguments.Count > 0) { OutputPossibleLineBreak(node.InBrackets ? '[' : '('); MarkSegment(node, null, node.Arguments.Context); JsAstNode argument = null; for (var ndx = 0; ndx < node.Arguments.Count; ++ndx) { if (ndx > 0) { OutputPossibleLineBreak(','); MarkSegment(node.Arguments, null, argument.IfNotNull(a => a.TerminatingContext) ?? node.Arguments.Context); if (m_settings.OutputMode == MinifierOutputMode.MultipleLines) { OutputPossibleLineBreak(' '); } } argument = node.Arguments[ndx]; if (argument != null) { AcceptNodeWithParens(argument, argument.Precedence <= JsOperatorPrecedence.Comma); } } Output(node.InBrackets ? ']' : ')'); MarkSegment(node, null, node.Arguments.Context); } m_noIn = isNoIn; EndSymbol(symbol); } }
public override void Visit(JsCallNode node) { // same logic for most nodes TypicalHandler(node); }
public override void Visit(JsCallNode node) { if (node != null) { // depth-first base.Visit(node); // if this isn't a constructor and it isn't a member-brackets operator if (!node.IsConstructor && !node.InBrackets) { // check to see if this is a call of certain member functions var member = node.Function as JsMember; if (member != null) { if (string.CompareOrdinal(member.Name, "join") == 0 && node.Arguments.Count <= 1 && m_parser.Settings.IsModificationAllowed(JsTreeModifications.EvaluateLiteralJoins)) { // this is a call to join with zero or one argument (no more) // see if the root is an array literal that has no issues var arrayLiteral = member.Root as JsArrayLiteral; if (arrayLiteral != null && !arrayLiteral.MayHaveIssues) { // it is -- make sure the separator is either not specified or is a constant JsConstantWrapper separator = null; if (node.Arguments.Count == 0 || (separator = node.Arguments[0] as JsConstantWrapper) != null) { // and the array literal must contain only constant items if (OnlyHasConstantItems(arrayLiteral)) { // last test: compute the combined string and only use it if it's actually // shorter than the original code var combinedJoin = ComputeJoin(arrayLiteral, separator); if (combinedJoin.Length + 2 < node.ToCode().Length) { // transform: [c,c,c].join(s) => "cscsc" ReplaceNodeWithLiteral(node, new JsConstantWrapper(combinedJoin, JsPrimitiveType.String, node.Context, node.Parser)); } } } } } } } } }
public override void Visit(JsCallNode node) { if (node != null) { // see if this is a member (we'll need it for a couple checks) JsMember member = node.Function as JsMember; JsLookup lookup; if (m_parser.Settings.StripDebugStatements && m_parser.Settings.IsModificationAllowed(JsTreeModifications.StripDebugStatements)) { // if this is a member, and it's a debugger object, and it's a constructor.... if (member != null && member.IsDebuggerStatement && node.IsConstructor) { // we have "new root.func(...)", root.func is a debug namespace, and we // are stripping debug namespaces. Replace the new-operator with an // empty object literal and bail. node.Parent.ReplaceChild(node, new JsObjectLiteral(node.Context, node.Parser)); return; } } // if this is a constructor and we want to collapse // some of them to literals... if (node.IsConstructor && m_parser.Settings.CollapseToLiteral) { // see if this is a lookup, and if so, if it's pointing to one // of the two constructors we want to collapse lookup = node.Function as JsLookup; if (lookup != null) { if (lookup.Name == "Object" && m_parser.Settings.IsModificationAllowed(JsTreeModifications.NewObjectToObjectLiteral)) { // no arguments -- the Object constructor with no arguments is the exact same as an empty // object literal if (node.Arguments == null || node.Arguments.Count == 0) { // replace our node with an object literal var objLiteral = new JsObjectLiteral(node.Context, m_parser); if (node.Parent.ReplaceChild(node, objLiteral)) { // and bail now. No need to recurse -- it's an empty literal return; } } else if (node.Arguments.Count == 1) { // one argument // check to see if it's an object literal. var objectLiteral = node.Arguments[0] as JsObjectLiteral; if (objectLiteral != null) { // the Object constructor with an argument that is a JavaScript object merely returns the // argument. Since the argument is an object literal, it is by definition a JavaScript object // and therefore we can replace the constructor call with the object literal node.Parent.ReplaceChild(node, objectLiteral); // don't forget to recurse the object now objectLiteral.Accept(this); // and then bail -- we don't want to process this call // operation any more; we've gotten rid of it return; } } } else if (lookup.Name == "Array" && m_parser.Settings.IsModificationAllowed(JsTreeModifications.NewArrayToArrayLiteral)) { // Array is trickier. // If there are no arguments, then just use []. // if there are multiple arguments, then use [arg0,arg1...argN]. // but if there is one argument and it's numeric, we can't crunch it. // also can't crunch if it's a function call or a member or something, since we won't // KNOW whether or not it's numeric. // // so first see if it even is a single-argument constant wrapper. JsConstantWrapper constWrapper = (node.Arguments != null && node.Arguments.Count == 1 ? node.Arguments[0] as JsConstantWrapper : null); // if the argument count is not one, then we crunch. // if the argument count IS one, we only crunch if we have a constant wrapper, // AND it's not numeric. if (node.Arguments == null || node.Arguments.Count != 1 || (constWrapper != null && !constWrapper.IsNumericLiteral)) { // create the new array literal object var arrayLiteral = new JsArrayLiteral(node.Context, m_parser) { Elements = node.Arguments }; // replace ourself within our parent if (node.Parent.ReplaceChild(node, arrayLiteral)) { // recurse arrayLiteral.Accept(this); // and bail -- we don't want to recurse this node any more return; } } } } } // if we are replacing resource references with strings generated from resource files // and this is a brackets call: lookup[args] var resourceList = m_parser.Settings.ResourceStrings; if (node.InBrackets && resourceList.Count > 0) { // if we don't have a match visitor, create it now if (m_matchVisitor == null) { m_matchVisitor = new JsMatchPropertiesVisitor(); } // check each resource strings object to see if we have a match. // Walk the list BACKWARDS so that later resource string definitions supercede previous ones. for (var ndx = resourceList.Count - 1; ndx >= 0; --ndx) { var resourceStrings = resourceList[ndx]; // check to see if the resource strings name matches the function if (resourceStrings != null && m_matchVisitor.Match(node.Function, resourceStrings.Name)) { // we're going to replace this node with a string constant wrapper // but first we need to make sure that this is a valid lookup. // if the parameter contains anything that would vary at run-time, // then we need to throw an error. // the parser will always have either one or zero nodes in the arguments // arg list. We're not interested in zero args, so just make sure there is one if (node.Arguments.Count == 1) { // must be a constant wrapper JsConstantWrapper argConstant = node.Arguments[0] as JsConstantWrapper; if (argConstant != null) { string resourceName = argConstant.Value.ToString(); // get the localized string from the resources object JsConstantWrapper resourceLiteral = new JsConstantWrapper( resourceStrings[resourceName], JsPrimitiveType.String, node.Context, m_parser); // replace this node with localized string, analyze it, and bail // so we don't anaylze the tree we just replaced node.Parent.ReplaceChild(node, resourceLiteral); resourceLiteral.Accept(this); return; } else { // error! must be a constant node.Context.HandleError( JsError.ResourceReferenceMustBeConstant, true); } } else { // error! can only be a single constant argument to the string resource object. // the parser will only have zero or one arguments, so this must be zero // (since the parser won't pass multiple args to a [] operator) node.Context.HandleError( JsError.ResourceReferenceMustBeConstant, true); } } } } // and finally, if this is a backets call and the argument is a constantwrapper that can // be an identifier, just change us to a member node: obj["prop"] to obj.prop. // but ONLY if the string value is "safe" to be an identifier. Even though the ECMA-262 // spec says certain Unicode categories are okay, in practice the various major browsers // all seem to have problems with certain characters in identifiers. Rather than risking // some browsers breaking when we change this syntax, don't do it for those "danger" categories. if (node.InBrackets && node.Arguments != null) { // see if there is a single, constant argument string argText = node.Arguments.SingleConstantArgument; if (argText != null) { // see if we want to replace the name string newName; if (m_parser.Settings.HasRenamePairs && m_parser.Settings.ManualRenamesProperties && m_parser.Settings.IsModificationAllowed(JsTreeModifications.PropertyRenaming) && !string.IsNullOrEmpty(newName = m_parser.Settings.GetNewName(argText))) { // yes -- we are going to replace the name, either as a string literal, or by converting // to a member-dot operation. // See if we can't turn it into a dot-operator. If we can't, then we just want to replace the operator with // a new constant wrapper. Otherwise we'll just replace the operator with a new constant wrapper. if (m_parser.Settings.IsModificationAllowed(JsTreeModifications.BracketMemberToDotMember) && JsScanner.IsSafeIdentifier(newName) && !JsScanner.IsKeyword(newName, node.EnclosingScope.UseStrict)) { // the new name is safe to convert to a member-dot operator. // but we don't want to convert the node to the NEW name, because we still need to Analyze the // new member node -- and it might convert the new name to something else. So instead we're // just going to convert this existing string to a member node WITH THE OLD STRING, // and THEN analyze it (which will convert the old string to newName) JsMember replacementMember = new JsMember(node.Context, m_parser) { Root = node.Function, Name = argText, NameContext = node.Arguments[0].Context }; node.Parent.ReplaceChild(node, replacementMember); // this analyze call will convert the old-name member to the newName value replacementMember.Accept(this); return; } else { // nope; can't convert to a dot-operator. // we're just going to replace the first argument with a new string literal // and continue along our merry way. node.Arguments[0] = new JsConstantWrapper(newName, JsPrimitiveType.String, node.Arguments[0].Context, m_parser); } } else if (m_parser.Settings.IsModificationAllowed(JsTreeModifications.BracketMemberToDotMember) && JsScanner.IsSafeIdentifier(argText) && !JsScanner.IsKeyword(argText, node.EnclosingScope.UseStrict)) { // not a replacement, but the string literal is a safe identifier. So we will // replace this call node with a Member-dot operation JsMember replacementMember = new JsMember(node.Context, m_parser) { Root = node.Function, Name = argText, NameContext = node.Arguments[0].Context }; node.Parent.ReplaceChild(node, replacementMember); replacementMember.Accept(this); return; } } } // call the base class to recurse base.Visit(node); // might have changed member = node.Function as JsMember; lookup = node.Function as JsLookup; var isEval = false; if (lookup != null && string.CompareOrdinal(lookup.Name, "eval") == 0 && lookup.VariableField.FieldType == JsFieldType.Predefined) { // call to predefined eval function isEval = true; } else if (member != null && string.CompareOrdinal(member.Name, "eval") == 0) { // if this is a window.eval call, then we need to mark this scope as unknown just as // we would if this was a regular eval call. // (unless, of course, the parser settings say evals are safe) // call AFTER recursing so we know the left-hand side properties have had a chance to // lookup their fields to see if they are local or global if (member.Root.IsWindowLookup) { // this is a call to window.eval() isEval = true; } } else { JsCallNode callNode = node.Function as JsCallNode; if (callNode != null && callNode.InBrackets && callNode.Function.IsWindowLookup && callNode.Arguments.IsSingleConstantArgument("eval")) { // this is a call to window["eval"] isEval = true; } } if (isEval) { if (m_parser.Settings.EvalTreatment != JsEvalTreatment.Ignore) { // mark this scope as unknown so we don't crunch out locals // we might reference in the eval at runtime m_scopeStack.Peek().IsKnownAtCompileTime = false; } } } }