void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();
            scene = new Scene();

            // Create the Octree component to the scene so that drawable objects can be rendered. Use default volume
            // (-1000, -1000, -1000) to (1000, 1000, 1000)
            scene.CreateComponent<Octree>();

            // Create a Zone component into a child scene node. The Zone controls ambient lighting and fog settings. Like the Octree,
            // it also defines its volume with a bounding box, but can be rotated (so it does not need to be aligned to the world X, Y
            // and Z axes.) Drawable objects "pick up" the zone they belong to and use it when rendering; several zones can exist
            var zoneNode = scene.CreateChild("Zone");
            var zone = zoneNode.CreateComponent<Zone>();

            // Set same volume as the Octree, set a close bluish fog and some ambient light
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.05f, 0.1f, 0.15f);
            zone.FogColor = new Color(0.1f, 0.2f, 0.3f);
            zone.FogStart = 10;
            zone.FogEnd = 100;

            var boxesNode = scene.CreateChild("Boxes");

            const int numObjects = 2000;
            for (var i = 0; i < numObjects; ++i)
            {
                Node boxNode = new Node();
                boxesNode.AddChild(boxNode, 0);
                boxNode.Position = new Vector3(NextRandom(200f) - 100f, NextRandom(200f) - 100f, NextRandom(200f) - 100f);
                // Orient using random pitch, yaw and roll Euler angles
                boxNode.Rotation = new Quaternion(NextRandom(360.0f), NextRandom(360.0f), NextRandom(360.0f));

                var boxObject = boxNode.CreateComponent<StaticModel>();
                boxObject.Model = cache.Get<Model>("Models/Box.mdl");
                boxObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));

                // Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event.
                // The Rotator component derives from the base class CSComponent, which has convenience functionality to subscribe
                // to the various update events

                // Now we simply set same rotation speed for all objects
                var rotationSpeed = new Vector3(10.0f, 20.0f, 30.0f);

                // First style: use a Rotator instance, which is a component subclass, and
                // add it to the boxNode.
                var rotator = new Rotator() { RotationSpeed = rotationSpeed };
                boxNode.AddComponent(rotator);
            }
            // Create the camera. Let the starting position be at the world origin. As the fog limits maximum visible distance, we can
            // bring the far clip plane closer for more effective culling of distant objects
            CameraNode = scene.CreateChild("Camera");
            var camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 100.0f;

            // Create a point light to the camera scene node
            var light = CameraNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_POINT;
            light.Range = 30.0f;
        }
示例#2
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            scene = new Scene();

            // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will
            // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it
            // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically
            // optimizing manner
            scene.CreateComponent<Octree>();

            // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple
            // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger
            // (100 x 100 world units)
            var planeNode = scene.CreateChild("Plane");
            planeNode.Scale = new Vector3(100, 1, 100);
            var planeObject = planeNode.CreateComponent<StaticModel>();
            planeObject.Model = cache.Get<Model>("Models/Plane.mdl");
            planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

            // Create a directional light to the world so that we can see something. The light scene node's orientation controls the
            // light direction; we will use the SetDirection() function which calculates the orientation from a forward direction vector.
            // The light will use default settings (white light, no shadows)
            var lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f)); // The direction vector does not need to be normalized
            var light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;

            var rand = new Random();
            for (int i = 0; i < 200; i++)
            {
                var mushroom = scene.CreateChild("Mushroom");
                mushroom.Position = new Vector3(rand.Next(90) - 45, 0, rand.Next(90) - 45);
                mushroom.Rotation = new Quaternion(0, rand.Next(360), 0);
                mushroom.SetScale(0.5f + rand.Next(20000) / 10000.0f);
                var mushroomObject = mushroom.CreateComponent<StaticModel>();
                mushroomObject.Model = cache.Get<Model>("Models/Mushroom.mdl");
                mushroomObject.SetMaterial(cache.Get<Material>("Materials/Mushroom.xml"));
            }

            CameraNode = scene.CreateChild("camera");
            camera = CameraNode.CreateComponent<Camera>();
            CameraNode.Position = new Vector3(0, 5, 0);
        }
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            // Create a physics simulation world with default parameters, which will update at 60fps. Like the Octree must
            // exist before creating drawable components, the PhysicsWorld must exist before creating physics components.
            // Finally, create a DebugRenderer component so that we can draw physics debug geometry
            scene.CreateComponent<Octree>();
            scene.CreateComponent<PhysicsWorld>();
            scene.CreateComponent<DebugRenderer>();

            // Create a Zone component for ambient lighting & fog control
            Node zoneNode = scene.CreateChild("Zone");
            Zone zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor = new Color(0.5f, 0.5f, 0.7f);
            zone.FogStart = 100.0f;
            zone.FogEnd = 300.0f;

            // Create a directional light to the world. Enable cascaded shadows on it
            Node lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;
            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);
            // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);

            {
                // Create a floor object, 500 x 500 world units. Adjust position so that the ground is at zero Y
                Node floorNode = scene.CreateChild("Floor");
                floorNode.Position = new Vector3(0.0f, -0.5f, 0.0f);
                floorNode.Scale = new Vector3(500.0f, 1.0f, 500.0f);
                StaticModel floorObject = floorNode.CreateComponent<StaticModel>();
                floorObject.Model = cache.Get<Model>("Models/Box.mdl");
                floorObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

                // Make the floor physical by adding RigidBody and CollisionShape components
                /*RigidBody* body = */
                floorNode.CreateComponent<RigidBody>();
                CollisionShape shape = floorNode.CreateComponent<CollisionShape>();
                shape.SetBox(Vector3.One, Vector3.Zero, Quaternion.Identity);
            }

            {
                // Create static mushrooms with triangle mesh collision
                const uint numMushrooms = 50;
                for (uint i = 0; i < numMushrooms; ++i)
                {
                    Node mushroomNode = scene.CreateChild("Mushroom");
                    mushroomNode.Position = new Vector3(NextRandom(400.0f) - 200.0f, 0.0f, NextRandom(400.0f) - 200.0f);
                    mushroomNode.Rotation = new Quaternion(0.0f, NextRandom(360.0f), 0.0f);
                    mushroomNode.SetScale(5.0f + NextRandom(5.0f));
                    StaticModel mushroomObject = mushroomNode.CreateComponent<StaticModel>();
                    mushroomObject.Model = (cache.Get<Model>("Models/Mushroom.mdl"));
                    mushroomObject.SetMaterial(cache.Get<Material>("Materials/Mushroom.xml"));
                    mushroomObject.CastShadows = true;

                    mushroomNode.CreateComponent<RigidBody>();
                    CollisionShape shape = mushroomNode.CreateComponent<CollisionShape>();
                    // By default the highest LOD level will be used, the LOD level can be passed as an optional parameter
                    shape.SetTriangleMesh(mushroomObject.Model, 0, Vector3.One, Vector3.Zero, Quaternion.Identity);
                }
            }

            {
                // Create a large amount of falling physics objects
                const uint numObjects = 1000;
                for (uint i = 0; i < numObjects; ++i)
                {
                    Node boxNode = scene.CreateChild("Box");
                    boxNode.Position = new Vector3(0.0f, i * 2.0f + 100.0f, 0.0f);
                    StaticModel boxObject = boxNode.CreateComponent<StaticModel>();
                    boxObject.Model = cache.Get<Model>("Models/Box.mdl");
                    boxObject.SetMaterial(cache.Get<Material>("Materials/StoneSmall.xml"));
                    boxObject.CastShadows = true;

                    // Give the RigidBody mass to make it movable and also adjust friction
                    RigidBody body = boxNode.CreateComponent<RigidBody>();
                    body.Mass = 1.0f;
                    body.Friction = 1.0f;
                    // Disable collision event signaling to reduce CPU load of the physics simulation
                    body.CollisionEventMode = CollisionEventMode.COLLISION_NEVER;
                    CollisionShape shape = boxNode.CreateComponent<CollisionShape>();
                    shape.SetBox(Vector3.One, Vector3.Zero, Quaternion.Identity);
                }
            }

            // Create the camera. Limit far clip distance to match the fog. Note: now we actually create the camera node outside
            // the scene, because we want it to be unaffected by scene load / save
            CameraNode = new Node();
            Camera camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 300.0f;

            // Set an initial position for the camera scene node above the floor
            CameraNode.Position = new Vector3(0.0f, 3.0f, -20.0f);
        }
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            {
                rttScene = new Scene();
                // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
                rttScene.CreateComponent<Octree>();

                // Create a Zone for ambient light & fog control
                Node zoneNode = rttScene.CreateChild("Zone");
                Zone zone = zoneNode.CreateComponent<Zone>();
                // Set same volume as the Octree, set a close bluish fog and some ambient light
                zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
                zone.AmbientColor = new Color(0.05f, 0.1f, 0.15f);
                zone.FogColor = new Color(0.1f, 0.2f, 0.3f);
                zone.FogStart = 10.0f;
                zone.FogEnd = 100.0f;

                // Create randomly positioned and oriented box StaticModels in the scene
                const uint numObjects = 2000;
                for (uint i = 0; i < numObjects; ++i)
                {
                    Node boxNode = rttScene.CreateChild("Box");
                    boxNode.Position = new Vector3(NextRandom(200.0f) - 100.0f, NextRandom(200.0f) - 100.0f,
                        NextRandom(200.0f) - 100.0f);
                    // Orient using random pitch, yaw and roll Euler angles
                    boxNode.Rotation = new Quaternion(NextRandom(360.0f), NextRandom(360.0f), NextRandom(360.0f));
                    StaticModel boxObject = boxNode.CreateComponent<StaticModel>();
                    boxObject.Model = cache.Get<Model>("Models/Box.mdl");
                    boxObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));

                    // Add our custom Rotator component which will rotate the scene node each frame, when the scene sends its update event.
                    // Simply set same rotation speed for all objects
                    Rotator rotator = new Rotator();
                    boxNode.AddComponent(rotator);
                    rotator.SetRotationSpeed(new Vector3(10.0f, 20.0f, 30.0f));
                }

                // Create a camera for the render-to-texture scene. Simply leave it at the world origin and let it observe the scene
                rttCameraNode = rttScene.CreateChild("Camera");
                Camera camera = rttCameraNode.CreateComponent<Camera>();
                camera.FarClip = 100.0f;

                // Create a point light to the camera scene node
                Light light = rttCameraNode.CreateComponent<Light>();
                light.LightType = LightType.LIGHT_POINT;
                light.Range = 30.0f;
            }

            {
                // Create the scene in which we move around

                scene = new Scene();

                // Create octree, use also default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
                scene.CreateComponent<Octree>();

                // Create a Zone component for ambient lighting & fog control
                Node zoneNode = scene.CreateChild("Zone");
                Zone zone = zoneNode.CreateComponent<Zone>();
                zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
                zone.AmbientColor = new Color(0.1f, 0.1f, 0.1f);
                zone.FogStart = 100.0f;
                zone.FogEnd = 300.0f;

                // Create a directional light without shadows
                Node lightNode = scene.CreateChild("DirectionalLight");
                lightNode.SetDirection(new Vector3(0.5f, -1.0f, 0.5f));
                Light light = lightNode.CreateComponent<Light>();
                light.LightType = LightType.LIGHT_DIRECTIONAL;
                light.Color = new Color(0.2f, 0.2f, 0.2f);
                light.SpecularIntensity = 1.0f;

                // Create a "floor" consisting of several tiles
                for (int y = -5; y <= 5; ++y)
                {
                    for (int x = -5; x <= 5; ++x)
                    {
                        Node floorNode = scene.CreateChild("FloorTile");
                        floorNode.Position = new Vector3(x*20.5f, -0.5f, y*20.5f);
                        floorNode.Scale = new Vector3(20.0f, 1.0f, 20.0f);
                        StaticModel floorObject = floorNode.CreateComponent<StaticModel>();
                        floorObject.Model = cache.Get<Model>("Models/Box.mdl");
                        floorObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));
                    }
                }

                // Create a "screen" like object for viewing the second scene. Construct it from two StaticModels, a box for the frame
                // and a plane for the actual view
                {
                    Node boxNode = scene.CreateChild("ScreenBox");
                    boxNode.Position = new Vector3(0.0f, 10.0f, 0.0f);
                    boxNode.Scale = new Vector3(21.0f, 16.0f, 0.5f);
                    StaticModel boxObject = boxNode.CreateComponent<StaticModel>();
                    boxObject.Model = cache.Get<Model>("Models/Box.mdl");
                    boxObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));

                    Node screenNode = scene.CreateChild("Screen");
                    screenNode.Position = new Vector3(0.0f, 10.0f, -0.27f);
                    screenNode.Rotation = new Quaternion(-90.0f, 0.0f, 0.0f);
                    screenNode.Scale = new Vector3(20.0f, 0.0f, 15.0f);
                    StaticModel screenObject = screenNode.CreateComponent<StaticModel>();
                    screenObject.Model = cache.Get<Model>("Models/Plane.mdl");

                    // Create a renderable texture (1024x768, RGB format), enable bilinear filtering on it
                    Texture2D renderTexture = new Texture2D();
                    renderTexture.SetSize(1024, 768, Graphics.GetRGBFormat(), TextureUsage.TEXTURE_RENDERTARGET);
                    renderTexture.FilterMode = TextureFilterMode.FILTER_BILINEAR;

                    // Create a new material from scratch, use the diffuse unlit technique, assign the render texture
                    // as its diffuse texture, then assign the material to the screen plane object
                    Material renderMaterial = new Material();
                    renderMaterial.SetTechnique(0, cache.Get<Technique>("Techniques/DiffUnlit.xml"), 0, 0);
                    renderMaterial.SetTexture(TextureUnit.TU_DIFFUSE, renderTexture);
                    screenObject.SetMaterial(renderMaterial);

                    // Get the texture's RenderSurface object (exists when the texture has been created in rendertarget mode)
                    // and define the viewport for rendering the second scene, similarly as how backbuffer viewports are defined
                    // to the Renderer subsystem. By default the texture viewport will be updated when the texture is visible
                    // in the main view
                    RenderSurface surface = renderTexture.RenderSurface;
                    Viewport rttViewport = new Viewport(rttScene, rttCameraNode.GetComponent<Camera>());
                    surface.SetViewport(0, rttViewport);
                }

                // Create the camera. Limit far clip distance to match the fog
                CameraNode = scene.CreateChild("Camera");
                var camera = CameraNode.CreateComponent<Camera>();
                camera.FarClip = 300.0f;
                // Set an initial position for the camera scene node above the plane
                CameraNode.Position = new Vector3(0.0f, 7.0f, -30.0f);
            }
        }
示例#5
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();
            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            scene.CreateComponent<Octree>();

            // Create a Zone component for ambient lighting & fog control
            var zoneNode = scene.CreateChild("Zone");
            var zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor = new Color(1.0f, 1.0f, 1.0f);
            zone.FogStart = 500.0f;
            zone.FogEnd = 750.0f;

            // Create a directional light to the world. Enable cascaded shadows on it
            var lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            var light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;
            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);
            light.SpecularIntensity = 0.5f;
            // Apply slightly overbright lighting to match the skybox
            light.Color = new Color(1.2f, 1.2f, 1.2f);

            // Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
            // illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
            // generate the necessary 3D texture coordinates for cube mapping
            var skyNode = scene.CreateChild("Sky");
            skyNode.SetScale(500.0f); // The scale actually does not matter
            var skybox = skyNode.CreateComponent<Skybox>();
            skybox.Model = cache.Get<Model>("Models/Box.mdl");
            skybox.SetMaterial(cache.Get<Material>("Materials/Skybox.xml"));

            // Create heightmap terrain
            var terrainNode = scene.CreateChild("Terrain");
            terrainNode.Position = new Vector3(0.0f, 0.0f, 0.0f);
            var terrain = terrainNode.CreateComponent<Terrain>();
            terrain.PatchSize = 64;
            terrain.Spacing = new Vector3(2.0f, 0.5f, 2.0f); // Spacing between vertices and vertical resolution of the height map
            terrain.Smoothing =true;
            terrain.SetHeightMap(cache.Get<Image>("Textures/HeightMap.png"));
            terrain.Material = cache.Get<Material>("Materials/Terrain.xml");
            // The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
            // terrain patches and other objects behind it
            terrain.Occluder = true;

            // Create 1000 boxes in the terrain. Always face outward along the terrain normal
            uint numObjects = 1000;
            for (uint i = 0; i < numObjects; ++i)
            {
                var objectNode = scene.CreateChild("Box");
                Vector3 position = new Vector3(NextRandom(2000.0f) - 1000.0f, 0.0f, NextRandom(2000.0f) - 1000.0f);
                position.Y = terrain.GetHeight(position) + 2.25f;
                objectNode.Position = position;
                // Create a rotation quaternion from up vector to terrain normal
                objectNode.Rotation = Quaternion.FromRotationTo(new Vector3(0.0f, 1.0f, 0.0f), terrain.GetNormal(position));
                objectNode.SetScale(5.0f);
                var obj = objectNode.CreateComponent<StaticModel>();
                obj.Model = cache.Get<Model>("Models/Box.mdl");
                obj.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));
                obj.CastShadows = true;
            }

            // Create a water plane object that is as large as the terrain
            waterNode = scene.CreateChild("Water");
            waterNode.Scale = new Vector3(2048.0f, 1.0f, 2048.0f);
            waterNode.Position = new Vector3(0.0f, 5.0f, 0.0f);
            var water = waterNode.CreateComponent<StaticModel>();
            water.Model = cache.Get<Model>("Models/Plane.mdl");
            water.SetMaterial(cache.Get<Material>("Materials/Water.xml"));
            // Set a different viewmask on the water plane to be able to hide it from the reflection camera
            water.ViewMask = 0x80000000;

            // Create the camera. Limit far clip distance to match the fog
            CameraNode = new Node();
            var camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 750.0f;
            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = new Vector3(0.0f, 7.0f, -20.0f);
        }
示例#6
0
        void CreateScene()
        {
            scene = new Scene();
            scene.CreateComponent<Octree>();
            spriteNodes = new List<NodeInfo>((int) NumSprites);

            // Create camera node
            CameraNode = scene.CreateChild("Camera");
            // Set camera's position
            CameraNode.Position = (new Vector3(0.0f, 0.0f, -10.0f));

            Camera camera = CameraNode.CreateComponent<Camera>();
            camera.Orthographic = true;

            var graphics = GetSubsystem<Graphics>();
            camera.OrthoSize=(float)graphics.Height * PixelSize;

            var cache = GetSubsystem<ResourceCache>();
            // Get sprite
            Sprite2D sprite = cache.Get<Sprite2D>("Urho2D/Aster.png");
            if (sprite == null)
                return;

            float halfWidth = graphics.Width * 0.5f * PixelSize;
            float halfHeight = graphics.Height * 0.5f * PixelSize;

            for (uint i = 0; i < NumSprites; ++i)
            {
                Node spriteNode = scene.CreateChild("StaticSprite2D");
                spriteNode.Position = (new Vector3(NextRandom(-halfWidth, halfWidth), NextRandom(-halfHeight, halfHeight), 0.0f));

                StaticSprite2D staticSprite = spriteNode.CreateComponent<StaticSprite2D>();
                // Set random color
                staticSprite.Color = (new Color(NextRandom(1.0f), NextRandom(1.0f), NextRandom(1.0f), 1.0f));
                // Set blend mode
                staticSprite.BlendMode = BlendMode.BLEND_ALPHA;
                // Set sprite
                staticSprite.Sprite=sprite;
                // Add to sprite node vector
                spriteNodes.Add(new NodeInfo(spriteNode, new Vector3(NextRandom(-2.0f, 2.0f), NextRandom(-2.0f, 2.0f), 0.0f), NextRandom(-90.0f, 90.0f)));
            }

            // Get animation set
            AnimationSet2D animationSet = cache.Get<AnimationSet2D>("Urho2D/GoldIcon.scml");
            if (animationSet == null)
                return;

            var spriteNode2 = scene.CreateChild("AnimatedSprite2D");
            spriteNode2.Position = (new Vector3(0.0f, 0.0f, -1.0f));

            AnimatedSprite2D animatedSprite = spriteNode2.CreateComponent<AnimatedSprite2D>();
            // Set animation
            animatedSprite.AnimationSet = animationSet;
            animatedSprite.SetAnimation("idle", LoopMode2D.LM_DEFAULT);
        }
示例#7
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();
            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            // Create a physics simulation world with default parameters, which will update at 60fps. Like the Octree must
            // exist before creating drawable components, the PhysicsWorld must exist before creating physics components.
            // Finally, create a DebugRenderer component so that we can draw physics debug geometry
            scene.CreateComponent<Octree>();
            scene.CreateComponent<PhysicsWorld>();
            scene.CreateComponent<DebugRenderer>();

            // Create a Zone component for ambient lighting & fog control
            Node zoneNode = scene.CreateChild("Zone");
            Zone zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor = new Color(1.0f, 1.0f, 1.0f);
            zone.FogStart = 300.0f;
            zone.FogEnd = 500.0f;

            // Create a directional light to the world. Enable cascaded shadows on it
            Node lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;
            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);
            // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);

            // Create skybox. The Skybox component is used like StaticModel, but it will be always located at the camera, giving the
            // illusion of the box planes being far away. Use just the ordinary Box model and a suitable material, whose shader will
            // generate the necessary 3D texture coordinates for cube mapping
            Node skyNode = scene.CreateChild("Sky");
            skyNode.SetScale(500.0f); // The scale actually does not matter
            Skybox skybox = skyNode.CreateComponent<Skybox>();
            skybox.Model = cache.Get<Model>("Models/Box.mdl");
            skybox.SetMaterial(cache.Get<Material>("Materials/Skybox.xml"));

            {
                // Create a floor object, 1000 x 1000 world units. Adjust position so that the ground is at zero Y
                Node floorNode = scene.CreateChild("Floor");
                floorNode.Position = new Vector3(0.0f, -0.5f, 0.0f);
                floorNode.Scale = new Vector3(1000.0f, 1.0f, 1000.0f);
                StaticModel floorObject = floorNode.CreateComponent<StaticModel>();
                floorObject.Model = cache.Get<Model>("Models/Box.mdl");
                floorObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

                // Make the floor physical by adding RigidBody and CollisionShape components. The RigidBody's default
                // parameters make the object static (zero mass.) Note that a CollisionShape by itself will not participate
                // in the physics simulation

                floorNode.CreateComponent<RigidBody>();
                CollisionShape shape = floorNode.CreateComponent<CollisionShape>();
                // Set a box shape of size 1 x 1 x 1 for collision. The shape will be scaled with the scene node scale, so the
                // rendering and physics representation sizes should match (the box model is also 1 x 1 x 1.)
                shape.SetBox(Vector3.One, Vector3.Zero, Quaternion.Identity);
            }

            {
                // Create a pyramid of movable physics objects
                for (int y = 0; y < 8; ++y)
                {
                    for (int x = -y; x <= y; ++x)
                    {
                        Node boxNode = scene.CreateChild("Box");
                        boxNode.Position = new Vector3((float)x, -(float)y + 8.0f, 0.0f);
                        StaticModel boxObject = boxNode.CreateComponent<StaticModel>();
                        boxObject.Model = cache.Get<Model>("Models/Box.mdl");
                        boxObject.SetMaterial(cache.Get<Material>("Materials/StoneEnvMapSmall.xml"));
                        boxObject.CastShadows = true;

                        // Create RigidBody and CollisionShape components like above. Give the RigidBody mass to make it movable
                        // and also adjust friction. The actual mass is not important; only the mass ratios between colliding
                        // objects are significant
                        RigidBody body = boxNode.CreateComponent<RigidBody>();
                        body.Mass = 1.0f;
                        body.Friction = 0.75f;
                        CollisionShape shape = boxNode.CreateComponent<CollisionShape>();
                        shape.SetBox(Vector3.One, Vector3.Zero, Quaternion.Identity);
                    }
                }
            }

            // Create the camera. Limit far clip distance to match the fog. Note: now we actually create the camera node outside
            // the scene, because we want it to be unaffected by scene load / save
            CameraNode = new Node();
            Camera camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 500.0f;

            // Set an initial position for the camera scene node above the floor
            CameraNode.Position = (new Vector3(0.0f, 5.0f, -20.0f));
        }
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();
            scene = new Scene();

            // Create the Octree component to the scene so that drawable objects can be rendered. Use default volume
            // (-1000, -1000, -1000) to (1000, 1000, 1000)
            scene.CreateComponent<Octree>();
            scene.CreateComponent<DebugRenderer>();

            // Create scene node & StaticModel component for showing a static plane
            var planeNode = scene.CreateChild("Plane");
            planeNode.Scale = new Vector3(100, 1, 100);
            var planeObject = planeNode.CreateComponent<StaticModel>();
            planeObject.Model = cache.Get<Model>("Models/Plane.mdl");
            planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

            // Create a Zone component for ambient lighting & fog control
            var zoneNode = scene.CreateChild("Zone");
            var zone = zoneNode.CreateComponent<Zone>();

            // Set same volume as the Octree, set a close bluish fog and some ambient light
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor = new Color(0.5f, 0.5f, 0.7f);
            zone.FogStart = 100;
            zone.FogEnd = 300;

            // Create a directional light to the world. Enable cascaded shadows on it
            var lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            var light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;

            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);

            // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);

            // Create animated models
            const int numModels = 100;
            const float modelMoveSpeed = 2.0f;
            const float modelRotateSpeed = 100.0f;
            var bounds = new BoundingBox(new Vector3(-47.0f, 0.0f, -47.0f), new Vector3(47.0f, 0.0f, 47.0f));

            for (var i = 0; i < numModels; ++i)
            {
                var modelNode = scene.CreateChild("Jack");
                modelNode.Position = new Vector3(NextRandom(-45, 45), 0.0f, NextRandom(-45, 45));
                modelNode.Rotation = new Quaternion(0, NextRandom(0, 360), 0);
                //var modelObject = modelNode.CreateComponent<AnimatedModel>();
                var modelObject = new AnimatedModel();
                modelNode.AddComponent(modelObject);
                modelObject.Model = cache.Get<Model>("Models/Jack.mdl");
                //modelObject.Material = cache.GetMaterial("Materials/Jack.xml");
                modelObject.CastShadows = true;

                // Create an AnimationState for a walk animation. Its time position will need to be manually updated to advance the
                // animation, The alternative would be to use an AnimationController component which updates the animation automatically,
                // but we need to update the model's position manually in any case
                var walkAnimation = cache.Get<Animation>("Models/Jack_Walk.ani");
                var state = modelObject.AddAnimationState(walkAnimation);
                // The state would fail to create (return null) if the animation was not found
                if (state != null)
                {
                    // Enable full blending weight and looping
                    state.Weight = 1;
                    state.Looped = true;
                }

                // Create our custom Mover component that will move & animate the model during each frame's update
                var mover = new Mover(modelMoveSpeed, modelRotateSpeed, bounds);
                modelNode.AddComponent(mover);
            }

            // Create the camera. Limit far clip distance to match the fog
            CameraNode = scene.CreateChild("Camera");
            camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 300;

            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = new Vector3(0.0f, 5.0f, 0.0f);
        }
示例#9
0
        public override void Start()
        {
            Art.Load();

            var graphics = AtomicNET.GetSubsystem<Graphics>();
            float width = graphics.Width;
            float height = graphics.Height;

            ScreenSize = new Vector2(width, height);
            ScreenBounds = new IntRect(0, 0, (int)ScreenSize.X, (int)ScreenSize.Y);

            var renderer = AtomicNET.GetSubsystem<Renderer>();
            var viewport = renderer.GetViewport(0);

            renderer.HDRRendering = true;

            var renderpath = viewport.GetRenderPath().Clone();
            renderpath.Append(AtomicNET.Cache.GetResource<XMLFile>("RenderPath/BloomHDR.xml"));
            renderpath.Append(AtomicNET.Cache.GetResource<XMLFile>("RenderPath/Blur.xml"));
            viewport.SetRenderPath(renderpath);

            Scene = new Scene();
            Scene.CreateComponent<Octree>();

            var camera = Scene.CreateChild("Camera").CreateComponent<Camera>();
            camera.Node.Position = new Vector3(width / 2.0f, height / 2.0f, 0.0f);
            camera.Orthographic = true;
            camera.OrthoSize = height;

            viewport.Scene = Scene;
            viewport.Camera = camera;

            CustomRenderer.Initialize();

            ParticleManager = new ParticleManager<ParticleState>(1024 * 20, ParticleState.UpdateParticle);

            #if ATOMIC_DESKTOP
            const int maxGridPoints = 1600;
            #else
            const int maxGridPoints = 400;
            #endif

            float amt = (float)Math.Sqrt(ScreenBounds.Width * ScreenBounds.Height / maxGridPoints);
            Vector2 gridSpacing = new Vector2(amt, amt);

            IntRect expandedBounds = ScreenBounds;
            expandedBounds.Inflate((int)gridSpacing.X, (int)gridSpacing.Y);
            Grid = new Grid(expandedBounds, gridSpacing);

            EntityManager.Add(PlayerShip.Instance);

            SubscribeToEvent("Update", HandleUpdate);
            SubscribeToEvent("RenderPathEvent", HandleRenderPathEvent);
        }
示例#10
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();
            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            // Create a physics simulation world with default parameters, which will update at 60fps. Like the Octree must
            // exist before creating drawable components, the PhysicsWorld must exist before creating physics components.
            // Finally, create a DebugRenderer component so that we can draw physics debug geometry
            scene.CreateComponent<Octree>();
            scene.CreateComponent<PhysicsWorld>();
            scene.CreateComponent<DebugRenderer>();

            // Create a Zone component for ambient lighting & fog control
            Node zoneNode = scene.CreateChild("Zone");
            Zone zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = (new Color(0.15f, 0.15f, 0.15f));
            zone.FogColor = new Color(0.5f, 0.5f, 0.7f);
            zone.FogStart = 100.0f;
            zone.FogEnd = 300.0f;

            // Create a directional light to the world. Enable cascaded shadows on it
            Node lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;
            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);
            // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);

            {
                // Create a floor object, 500 x 500 world units. Adjust position so that the ground is at zero Y
                Node floorNode = scene.CreateChild("Floor");
                floorNode.Position = new Vector3(0.0f, -0.5f, 0.0f);
                floorNode.Scale = new Vector3(500.0f, 1.0f, 500.0f);
                StaticModel floorObject = floorNode.CreateComponent<StaticModel>();
                floorObject.Model = cache.Get<Model>("Models/Box.mdl");
                floorObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

                // Make the floor physical by adding RigidBody and CollisionShape components
                RigidBody body = floorNode.CreateComponent<RigidBody>();
                // We will be spawning spherical objects in this sample. The ground also needs non-zero rolling friction so that
                // the spheres will eventually come to rest
                body.RollingFriction = 0.15f;
                CollisionShape shape = floorNode.CreateComponent<CollisionShape>();
                // Set a box shape of size 1 x 1 x 1 for collision. The shape will be scaled with the scene node scale, so the
                // rendering and physics representation sizes should match (the box model is also 1 x 1 x 1.)
                shape.SetBox(Vector3.One, Vector3.Zero, Quaternion.Identity);
            }

            // Create animated models
            for (int z = -1; z <= 1; ++z)
            {
                for (int x = -4; x <= 4; ++x)
                {
                    Node modelNode = scene.CreateChild("Jack");
                    modelNode.Position = new Vector3(x * 5.0f, 0.0f, z * 5.0f);
                    modelNode.Rotation = new Quaternion(0.0f, 180.0f, 0.0f);
                    AnimatedModel modelObject = modelNode.CreateComponent<AnimatedModel>();
                    modelObject.Model = cache.Get<Model>("Models/Jack.mdl");
                    modelObject.SetMaterial(cache.Get<Material>("Materials/Jack.xml"));
                    modelObject.CastShadows = true;
                    // Set the model to also update when invisible to avoid staying invisible when the model should come into
                    // view, but does not as the bounding box is not updated
                    modelObject.UpdateInvisible = true;

                    // Create a rigid body and a collision shape. These will act as a trigger for transforming the
                    // model into a ragdoll when hit by a moving object
                    RigidBody body = modelNode.CreateComponent<RigidBody>();
                    // The Trigger mode makes the rigid body only detect collisions, but impart no forces on the
                    // colliding objects
                    body.Trigger = true;
                    CollisionShape shape = modelNode.CreateComponent<CollisionShape>();
                    // Create the capsule shape with an offset so that it is correctly aligned with the model, which
                    // has its origin at the feet
                    shape.SetCapsule(0.7f, 2.0f, new Vector3(0.0f, 1.0f, 0.0f), Quaternion.Identity);

                    // Create a custom component that reacts to collisions and creates the ragdoll
                    modelNode.AddComponent(new Ragdoll());
                }
            }

            // Create the camera. Limit far clip distance to match the fog
            CameraNode = new Node();
            camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 300.0f;
            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = new Vector3(0.0f, 3.0f, -20.0f);
        }
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            scene = new Scene();

            // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will
            // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it
            // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically
            // optimizing manner
            scene.CreateComponent<Octree>();

            // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple
            // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger
            // (100 x 100 world units)
            Node planeNode = scene.CreateChild("Plane");
            planeNode.Scale=new Vector3(100.0f, 1.0f, 100.0f);
            StaticModel planeObject = planeNode.CreateComponent<StaticModel>();
            planeObject.Model = (cache.Get<Model>("Models/Plane.mdl"));
            planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

            // Create a directional light to the world so that we can see something. The light scene node's orientation controls the
            // light direction; we will use the SetDirection() function which calculates the orientation from a forward direction vector.
            // The light will use default settings (white light, no shadows)
            Node lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f)); // The direction vector does not need to be normalized
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;

            // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a
            // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains
            // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll
            // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the
            // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the
            // scene.
            Material mushroomMat = cache.Get<Material>("Materials/Mushroom.xml");
            // Apply shader parameter animation to material
            ValueAnimation specColorAnimation=new ValueAnimation();

            specColorAnimation.SetKeyFrame(0.0f, new Color(0.1f, 0.1f, 0.1f, 16.0f));
            specColorAnimation.SetKeyFrame(1.0f, new Color(1.0f, 0.0f, 0.0f, 2.0f));
            specColorAnimation.SetKeyFrame(2.0f, new Color(1.0f, 1.0f, 0.0f, 2.0f));
            specColorAnimation.SetKeyFrame(3.0f, new Color(0.1f, 0.1f, 0.1f, 16.0f));
            // Optionally associate material with scene to make sure shader parameter animation respects scene time scale
            mushroomMat.Scene=scene;
            mushroomMat.SetShaderParameterAnimation("MatSpecColor", specColorAnimation, WrapMode.WM_LOOP, 1.0f);

            const uint numObjects = 200;
            for (uint i = 0; i < numObjects; ++i)
            {
                Node mushroomNode = scene.CreateChild("Mushroom");
                mushroomNode.Position = (new Vector3(NextRandom(90.0f) - 45.0f, 0.0f, NextRandom(90.0f) - 45.0f));
                mushroomNode.Rotation=new Quaternion(0.0f, NextRandom(360.0f), 0.0f);
                mushroomNode.SetScale(0.5f + NextRandom(2.0f));
                StaticModel mushroomObject = mushroomNode.CreateComponent<StaticModel>();
                mushroomObject.Model = (cache.Get<Model>("Models/Mushroom.mdl"));
                mushroomObject.SetMaterial(mushroomMat);
            }

            // Create a scene node for the camera, which we will move around
            // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically)
            CameraNode = scene.CreateChild("Camera");
            CameraNode.CreateComponent<Camera>();

            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = (new Vector3(0.0f, 5.0f, 0.0f));
        }
示例#12
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            scene = new Scene();

            // Create scene subsystem components
            scene.CreateComponent<Octree>();
            scene.CreateComponent<PhysicsWorld>();

            // Create camera and define viewport. We will be doing load / save, so it's convenient to create the camera outside the scene,
            // so that it won't be destroyed and recreated, and we don't have to redefine the viewport on load
            CameraNode = new Node();
            Camera camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 500.0f;
            GetSubsystem<Renderer>().SetViewport(0, new Viewport(scene, camera));

            // Create static scene content. First create a zone for ambient lighting and fog control
            Node zoneNode = scene.CreateChild("Zone");
            Zone zone = zoneNode.CreateComponent<Zone>();
            zone.AmbientColor = new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor = new Color(0.5f, 0.5f, 0.7f);
            zone.FogStart = 300.0f;
            zone.FogEnd = 500.0f;
            zone.SetBoundingBox(new BoundingBox(-2000.0f, 2000.0f));

            // Create a directional light with cascaded shadow mapping
            Node lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.3f, -0.5f, 0.425f));
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;
            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);
            light.SpecularIntensity = 0.5f;

            // Create heightmap terrain with collision
            Node terrainNode = scene.CreateChild("Terrain");
            terrainNode.Position = (Vector3.Zero);
            Terrain terrain = terrainNode.CreateComponent<Terrain>();
            terrain.PatchSize = 64;
            terrain.Spacing = new Vector3(2.0f, 0.1f, 2.0f); // Spacing between vertices and vertical resolution of the height map
            terrain.Smoothing = true;
            terrain.SetHeightMap(cache.Get<Image>("Textures/HeightMap.png"));
            terrain.Material = cache.Get<Material>("Materials/Terrain.xml");
            // The terrain consists of large triangles, which fits well for occlusion rendering, as a hill can occlude all
            // terrain patches and other objects behind it
            terrain.Occluder = true;

            RigidBody body = terrainNode.CreateComponent<RigidBody>();
            body.CollisionLayer = 2; // Use layer bitmask 2 for static geometry
            CollisionShape shape = terrainNode.CreateComponent<CollisionShape>();
            shape.SetTerrain(0);

            // Create 1000 mushrooms in the terrain. Always face outward along the terrain normal
            const uint numMushrooms = 1000;
            for (uint i = 0; i < numMushrooms; ++i)
            {
                Node objectNode = scene.CreateChild("Mushroom");
                Vector3 position = new Vector3(NextRandom(2000.0f) - 1000.0f, 0.0f, NextRandom(2000.0f) - 1000.0f);
                position.Y = terrain.GetHeight(position) - 0.1f;
                objectNode.Position = (position);
                // Create a rotation quaternion from up vector to terrain normal
                objectNode.Rotation = Quaternion.FromRotationTo(Vector3.UnitY, terrain.GetNormal(position));
                objectNode.SetScale(3.0f);
                StaticModel sm = objectNode.CreateComponent<StaticModel>();
                sm.Model = (cache.Get<Model>("Models/Mushroom.mdl"));
                sm.SetMaterial(cache.Get<Material>("Materials/Mushroom.xml"));
                sm.CastShadows = true;

                body = objectNode.CreateComponent<RigidBody>();
                body.CollisionLayer = 2;
                shape = objectNode.CreateComponent<CollisionShape>();
                shape.SetTriangleMesh(sm.Model, 0, Vector3.One, Vector3.Zero, Quaternion.Identity);
            }
        }
示例#13
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            // Also create a DebugRenderer component so that we can draw debug geometry
            scene.CreateComponent<Octree>();
            scene.CreateComponent<DebugRenderer>();

            // Create scene node & StaticModel component for showing a static plane
            Node planeNode = scene.CreateChild("Plane");
            planeNode.Scale = new Vector3(100.0f, 1.0f, 100.0f);
            StaticModel planeObject = planeNode.CreateComponent<StaticModel>();
            planeObject.Model = cache.Get<Model>("Models/Plane.mdl");
            planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

            // Create a Zone component for ambient lighting & fog control
            Node zoneNode = scene.CreateChild("Zone");
            Zone zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor = new Color(0.5f, 0.5f, 0.7f);
            zone.FogStart = 100.0f;
            zone.FogEnd = 300.0f;

            // Create a directional light to the world. Enable cascaded shadows on it
            Node lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;
            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);
            // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);

            // Create some mushrooms
            const uint numMushrooms = 100;
            for (uint i = 0; i < numMushrooms; ++i)
                CreateMushroom(new Vector3(NextRandom(90.0f) - 45.0f, 0.0f, NextRandom(90.0f) - 45.0f));

            // Create randomly sized boxes. If boxes are big enough, make them occluders
            const uint numBoxes = 20;
            for (uint i = 0; i < numBoxes; ++i)
            {
                Node boxNode = scene.CreateChild("Box");
                float size = 1.0f + NextRandom(10.0f);
                boxNode.Position = new Vector3(NextRandom(80.0f) - 40.0f, size * 0.5f, NextRandom(80.0f) - 40.0f);
                boxNode.SetScale(size);
                StaticModel boxObject = boxNode.CreateComponent<StaticModel>();
                boxObject.Model = cache.Get<Model>("Models/Box.mdl");
                boxObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));
                boxObject.CastShadows = true;
                if (size >= 3.0f)
                    boxObject.Occluder = true;
            }

            // Create Jack node that will follow the path
            jackNode = scene.CreateChild("Jack");
            jackNode.Position = new Vector3(-5.0f, 0.0f, 20.0f);
            AnimatedModel modelObject = jackNode.CreateComponent<AnimatedModel>();
            modelObject.Model = cache.Get<Model>("Models/Jack.mdl");
            modelObject.SetMaterial(cache.Get<Material>("Materials/Jack.xml"));
            modelObject.CastShadows = true;

            // Create a NavigationMesh component to the scene root
            NavigationMesh navMesh = scene.CreateComponent<NavigationMesh>();
            // Create a Navigable component to the scene root. This tags all of the geometry in the scene as being part of the
            // navigation mesh. By default this is recursive, but the recursion could be turned off from Navigable
            scene.CreateComponent<Navigable>();
            // Add padding to the navigation mesh in Y-direction so that we can add objects on top of the tallest boxes
            // in the scene and still update the mesh correctly
            navMesh.Padding = new Vector3(0.0f, 10.0f, 0.0f);
            // Now build the navigation geometry. This will take some time. Note that the navigation mesh will prefer to use
            // physics geometry from the scene nodes, as it often is simpler, but if it can not find any (like in this example)
            // it will use renderable geometry instead
            navMesh.Build();

            // Create the camera. Limit far clip distance to match the fog
            CameraNode = scene.CreateChild("Camera");
            Camera camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 300.0f;

            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = new Vector3(0.0f, 5.0f, 0.0f);
        }
示例#14
0
        void CreateScene()
        {
            scene = new Scene();
            scene.CreateComponent<Octree>();
            scene.CreateComponent<DebugRenderer>();
            PhysicsWorld2D physicsWorld = scene.CreateComponent<PhysicsWorld2D>(); // Create 2D physics world component
            physicsWorld.DrawJoint = true; // Display the joints (Note that DrawDebugGeometry() must be set to true to acually draw the joints)
            drawDebug = true; // Set DrawDebugGeometry() to true

            // Create camera
            CameraNode = scene.CreateChild("Camera");
            // Set camera's position
            CameraNode.Position = (new Vector3(0.0f, 0.0f, 0.0f)); // Note that Z setting is discarded; use camera.zoom instead (see MoveCamera() below for example)

            camera = CameraNode.CreateComponent<Camera>();
            camera.Orthographic = true;

            var graphics = GetSubsystem<Graphics>();

            camera.OrthoSize = (float)graphics.Height * PixelSize;
            camera.Zoom = 1.2f * Math.Min((float)graphics.Width / 1280.0f, (float)graphics.Height / 800.0f); // Set zoom according to user's resolution to ensure full visibility (initial zoom (1.2) is set for full visibility at 1280x800 resolution)

            // Set up a viewport to the Renderer subsystem so that the 3D scene can be seen
            Viewport viewport = new Viewport(scene, camera);
            Renderer renderer = GetSubsystem<Renderer>();
            renderer.SetViewport(0, viewport);

            Zone zone = renderer.DefaultZone;
            zone.FogColor = (new Color(0.1f, 0.1f, 0.1f)); // Set background color for the scene

            // Create 4x3 grid
            for (uint i = 0; i < 5; ++i)
            {
                Node edgeNode = scene.CreateChild("VerticalEdge");
                RigidBody2D edgeBody = edgeNode.CreateComponent<RigidBody2D>();
                if (dummyBody == null)
                    dummyBody = edgeBody; // Mark first edge as dummy body (used by mouse pick)
                CollisionEdge2D edgeShape = edgeNode.CreateComponent<CollisionEdge2D>();
                edgeShape.SetVertices(new Vector2(i * 2.5f - 5.0f, -3.0f), new Vector2(i * 2.5f - 5.0f, 3.0f));
                edgeShape.Friction = 0.5f; // Set friction
            }

            for (uint j = 0; j < 4; ++j)
            {
                Node edgeNode = scene.CreateChild("HorizontalEdge");
                /*RigidBody2D edgeBody = */
                edgeNode.CreateComponent<RigidBody2D>();
                CollisionEdge2D edgeShape = edgeNode.CreateComponent<CollisionEdge2D>();
                edgeShape.SetVertices(new Vector2(-5.0f, j * 2.0f - 3.0f), new Vector2(5.0f, j * 2.0f - 3.0f));
                edgeShape.Friction = 0.5f; // Set friction
            }

            var cache = GetSubsystem<ResourceCache>();

            // Create a box (will be cloned later)
            Node box = scene.CreateChild("Box");
            box.Position = (new Vector3(0.8f, -2.0f, 0.0f));
            StaticSprite2D boxSprite = box.CreateComponent<StaticSprite2D>();
            boxSprite.Sprite = cache.Get<Sprite2D>("Urho2D/Box.png");
            RigidBody2D boxBody = box.CreateComponent<RigidBody2D>();
            boxBody.BodyType = BodyType2D.BT_DYNAMIC;
            boxBody.LinearDamping = 0.0f;
            boxBody.AngularDamping = 0.0f;
            CollisionBox2D shape = box.CreateComponent<CollisionBox2D>(); // Create box shape
            shape.Size = new Vector2(0.32f, 0.32f); // Set size
            shape.Density = 1.0f; // Set shape density (kilograms per meter squared)
            shape.Friction = 0.5f; // Set friction
            shape.Restitution = 0.1f; // Set restitution (slight bounce)

            // Create a ball (will be cloned later)
            Node ball = scene.CreateChild("Ball");
            ball.Position = (new Vector3(1.8f, -2.0f, 0.0f));
            StaticSprite2D ballSprite = ball.CreateComponent<StaticSprite2D>();
            ballSprite.Sprite = cache.Get<Sprite2D>("Urho2D/Ball.png");
            RigidBody2D ballBody = ball.CreateComponent<RigidBody2D>();
            ballBody.BodyType = BodyType2D.BT_DYNAMIC;
            ballBody.LinearDamping = 0.0f;
            ballBody.AngularDamping = 0.0f;
            CollisionCircle2D ballShape = ball.CreateComponent<CollisionCircle2D>(); // Create circle shape
            ballShape.Radius = 0.16f; // Set radius
            ballShape.Density = 1.0f; // Set shape density (kilograms per meter squared)
            ballShape.Friction = 0.5f; // Set friction
            ballShape.Restitution = 0.6f; // Set restitution: make it bounce

            // Create a polygon
            Node polygon = scene.CreateChild("Polygon");
            polygon.Position = (new Vector3(1.6f, -2.0f, 0.0f));
            polygon.SetScale(0.7f);
            StaticSprite2D polygonSprite = polygon.CreateComponent<StaticSprite2D>();
            polygonSprite.Sprite = cache.Get<Sprite2D>("Urho2D/Aster.png");
            RigidBody2D polygonBody = polygon.CreateComponent<RigidBody2D>();
            polygonBody.BodyType = BodyType2D.BT_DYNAMIC;
            CollisionPolygon2D polygonShape = polygon.CreateComponent<CollisionPolygon2D>();
            polygonShape.VertexCount = 6; // Set number of vertices (mandatory when using SetVertex())
            polygonShape.SetVertex(0, new Vector2(-0.8f, -0.3f));
            polygonShape.SetVertex(1, new Vector2(0.5f, -0.8f));
            polygonShape.SetVertex(2, new Vector2(0.8f, -0.3f));
            polygonShape.SetVertex(3, new Vector2(0.8f, 0.5f));
            polygonShape.SetVertex(4, new Vector2(0.5f, 0.9f));
            polygonShape.SetVertex(5, new Vector2(-0.5f, 0.7f));
            polygonShape.Density = 1.0f; // Set shape density (kilograms per meter squared)
            polygonShape.Friction = 0.3f; // Set friction
            polygonShape.Restitution = 0.0f; // Set restitution (no bounce)

            // Create a ConstraintDistance2D
            CreateFlag("ConstraintDistance2D", -4.97f, 3.0f); // Display Text3D flag
            Node boxDistanceNode = box.Clone(CreateMode.REPLICATED);
            Node ballDistanceNode = ball.Clone(CreateMode.REPLICATED);
            RigidBody2D ballDistanceBody = ballDistanceNode.GetComponent<RigidBody2D>();
            boxDistanceNode.Position = (new Vector3(-4.5f, 2.0f, 0.0f));
            ballDistanceNode.Position = (new Vector3(-3.0f, 2.0f, 0.0f));

            ConstraintDistance2D constraintDistance = boxDistanceNode.CreateComponent<ConstraintDistance2D>(); // Apply ConstraintDistance2D to box
            constraintDistance.OtherBody = ballDistanceBody; // Constrain ball to box
            constraintDistance.OwnerBodyAnchor = boxDistanceNode.Position2D;
            constraintDistance.OtherBodyAnchor = ballDistanceNode.Position2D;
            // Make the constraint soft (comment to make it rigid, which is its basic behavior)
            constraintDistance.FrequencyHz = 4.0f;
            constraintDistance.DampingRatio = 0.5f;

            // Create a ConstraintFriction2D ********** Not functional. From Box2d samples it seems that 2 anchors are required, Urho2D only provides 1, needs investigation ***********
            CreateFlag("ConstraintFriction2D", 0.03f, 1.0f); // Display Text3D flag
            Node boxFrictionNode = box.Clone(CreateMode.REPLICATED);
            Node ballFrictionNode = ball.Clone(CreateMode.REPLICATED);
            boxFrictionNode.Position = (new Vector3(0.5f, 0.0f, 0.0f));
            ballFrictionNode.Position = (new Vector3(1.5f, 0.0f, 0.0f));

            ConstraintFriction2D constraintFriction = boxFrictionNode.CreateComponent<ConstraintFriction2D>(); // Apply ConstraintDistance2D to box
            constraintFriction.OtherBody = ballFrictionNode.GetComponent<RigidBody2D>(); // Constraint ball to box

            // Create a ConstraintGear2D
            CreateFlag("ConstraintGear2D", -4.97f, -1.0f); // Display Text3D flag
            Node baseNode = box.Clone(CreateMode.REPLICATED);
            RigidBody2D tempBody = baseNode.GetComponent<RigidBody2D>(); // Get body to make it static
            tempBody.BodyType = BodyType2D.BT_STATIC;
            baseNode.Position = (new Vector3(-3.7f, -2.5f, 0.0f));
            Node ball1Node = ball.Clone(CreateMode.REPLICATED);
            ball1Node.Position = (new Vector3(-4.5f, -2.0f, 0.0f));
            RigidBody2D ball1Body = ball1Node.GetComponent<RigidBody2D>();
            Node ball2Node = ball.Clone(CreateMode.REPLICATED);
            ball2Node.Position = (new Vector3(-3.0f, -2.0f, 0.0f));
            RigidBody2D ball2Body = ball2Node.GetComponent<RigidBody2D>();

            ConstraintRevolute2D gear1 = baseNode.CreateComponent<ConstraintRevolute2D>(); // Apply constraint to baseBox
            gear1.OtherBody = ball1Body; // Constrain ball1 to baseBox
            gear1.Anchor = ball1Node.Position2D;
            ConstraintRevolute2D gear2 = baseNode.CreateComponent<ConstraintRevolute2D>(); // Apply constraint to baseBox
            gear2.OtherBody = ball2Body; // Constrain ball2 to baseBox
            gear2.Anchor = ball2Node.Position2D;

            ConstraintGear2D constraintGear = ball1Node.CreateComponent<ConstraintGear2D>(); // Apply constraint to ball1
            constraintGear.OtherBody = ball2Body; // Constrain ball2 to ball1
            constraintGear.OwnerConstraint = gear1;
            constraintGear.OtherConstraint = gear2;
            constraintGear.Ratio = 1.0f;

            ball1Body.ApplyAngularImpulse(0.015f, true); // Animate

            // Create a vehicle from a compound of 2 ConstraintWheel2Ds
            CreateFlag("ConstraintWheel2Ds compound", -2.45f, -1.0f); // Display Text3D flag
            Node car = box.Clone(CreateMode.REPLICATED);
            car.Scale = new Vector3(4.0f, 1.0f, 0.0f);
            car.Position = (new Vector3(-1.2f, -2.3f, 0.0f));
            StaticSprite2D tempSprite = car.GetComponent<StaticSprite2D>(); // Get car Sprite in order to draw it on top
            tempSprite.OrderInLayer = 0; // Draw car on top of the wheels (set to -1 to draw below)
            Node ball1WheelNode = ball.Clone(CreateMode.REPLICATED);
            ball1WheelNode.Position = (new Vector3(-1.6f, -2.5f, 0.0f));
            Node ball2WheelNode = ball.Clone(CreateMode.REPLICATED);
            ball2WheelNode.Position = (new Vector3(-0.8f, -2.5f, 0.0f));

            ConstraintWheel2D wheel1 = car.CreateComponent<ConstraintWheel2D>();
            wheel1.OtherBody = ball1WheelNode.GetComponent<RigidBody2D>();
            wheel1.Anchor = ball1WheelNode.Position2D;
            wheel1.Axis = new Vector2(0.0f, 1.0f);
            wheel1.MaxMotorTorque = 20.0f;
            wheel1.FrequencyHz = 4.0f;
            wheel1.DampingRatio = 0.4f;

            ConstraintWheel2D wheel2 = car.CreateComponent<ConstraintWheel2D>();
            wheel2.OtherBody = ball2WheelNode.GetComponent<RigidBody2D>();
            wheel2.Anchor = ball2WheelNode.Position2D;
            wheel2.Axis = new Vector2(0.0f, 1.0f);
            wheel2.MaxMotorTorque = 10.0f;
            wheel2.FrequencyHz = 4.0f;
            wheel2.DampingRatio = 0.4f;

            // ConstraintMotor2D
            CreateFlag("ConstraintMotor2D", 2.53f, -1.0f); // Display Text3D flag
            Node boxMotorNode = box.Clone(CreateMode.REPLICATED);
            tempBody = boxMotorNode.GetComponent<RigidBody2D>(); // Get body to make it static
            tempBody.BodyType = BodyType2D.BT_STATIC;
            Node ballMotorNode = ball.Clone(CreateMode.REPLICATED);
            boxMotorNode.Position = (new Vector3(3.8f, -2.1f, 0.0f));
            ballMotorNode.Position = (new Vector3(3.8f, -1.5f, 0.0f));

            ConstraintMotor2D constraintMotor = boxMotorNode.CreateComponent<ConstraintMotor2D>();
            constraintMotor.OtherBody = ballMotorNode.GetComponent<RigidBody2D>(); // Constrain ball to box
            constraintMotor.LinearOffset = new Vector2(0.0f, 0.8f); // Set ballNode position relative to boxNode position = (0,0)
            constraintMotor.AngularOffset = 0.1f;
            constraintMotor.MaxForce = 5.0f;
            constraintMotor.MaxTorque = 10.0f;
            constraintMotor.CorrectionFactor = 1.0f;
            constraintMotor.CollideConnected = true; // doesn't work

            // ConstraintMouse2D is demonstrated in HandleMouseButtonDown() function. It is used to "grasp" the sprites with the mouse.
            CreateFlag("ConstraintMouse2D", 0.03f, -1.0f); // Display Text3D flag

            // Create a ConstraintPrismatic2D
            CreateFlag("ConstraintPrismatic2D", 2.53f, 3.0f); // Display Text3D flag
            Node boxPrismaticNode = box.Clone(CreateMode.REPLICATED);
            tempBody = boxPrismaticNode.GetComponent<RigidBody2D>(); // Get body to make it static
            tempBody.BodyType = BodyType2D.BT_STATIC;
            Node ballPrismaticNode = ball.Clone(CreateMode.REPLICATED);
            boxPrismaticNode.Position = new Vector3(3.3f, 2.5f, 0.0f);
            ballPrismaticNode.Position = new Vector3(4.3f, 2.0f, 0.0f);

            ConstraintPrismatic2D constraintPrismatic = boxPrismaticNode.CreateComponent<ConstraintPrismatic2D>();
            constraintPrismatic.OtherBody = ballPrismaticNode.GetComponent<RigidBody2D>(); // Constrain ball to box
            constraintPrismatic.Axis = new Vector2(1.0f, 1.0f); // Slide from [0,0] to [1,1]
            constraintPrismatic.Anchor = new Vector2(4.0f, 2.0f);
            constraintPrismatic.LowerTranslation = -1.0f;
            constraintPrismatic.UpperTranslation = 0.5f;
            constraintPrismatic.EnableLimit = true;
            constraintPrismatic.MaxMotorForce = 1.0f;
            constraintPrismatic.MotorSpeed = 0.0f;

            // ConstraintPulley2D
            CreateFlag("ConstraintPulley2D", 0.03f, 3.0f); // Display Text3D flag
            Node boxPulleyNode = box.Clone(CreateMode.REPLICATED);
            Node ballPulleyNode = ball.Clone(CreateMode.REPLICATED);
            boxPulleyNode.Position = (new Vector3(0.5f, 2.0f, 0.0f));
            ballPulleyNode.Position = (new Vector3(2.0f, 2.0f, 0.0f));

            ConstraintPulley2D constraintPulley = boxPulleyNode.CreateComponent<ConstraintPulley2D>(); // Apply constraint to box
            constraintPulley.OtherBody = ballPulleyNode.GetComponent<RigidBody2D>(); // Constrain ball to box
            constraintPulley.OwnerBodyAnchor = boxPulleyNode.Position2D;
            constraintPulley.OtherBodyAnchor = ballPulleyNode.Position2D;
            constraintPulley.OwnerBodyGroundAnchor = boxPulleyNode.Position2D + new Vector2(0.0f, 1.0f);
            constraintPulley.OtherBodyGroundAnchor = ballPulleyNode.Position2D + new Vector2(0.0f, 1.0f);
            constraintPulley.Ratio = 1.0f; // Weight ratio between ownerBody and otherBody

            // Create a ConstraintRevolute2D
            CreateFlag("ConstraintRevolute2D", -2.45f, 3.0f); // Display Text3D flag
            Node boxRevoluteNode = box.Clone(CreateMode.REPLICATED);
            tempBody = boxRevoluteNode.GetComponent<RigidBody2D>(); // Get body to make it static
            tempBody.BodyType = BodyType2D.BT_STATIC;
            Node ballRevoluteNode = ball.Clone(CreateMode.REPLICATED);
            boxRevoluteNode.Position = (new Vector3(-2.0f, 1.5f, 0.0f));
            ballRevoluteNode.Position = (new Vector3(-1.0f, 2.0f, 0.0f));

            ConstraintRevolute2D constraintRevolute = boxRevoluteNode.CreateComponent<ConstraintRevolute2D>(); // Apply constraint to box
            constraintRevolute.OtherBody = ballRevoluteNode.GetComponent<RigidBody2D>(); // Constrain ball to box
            constraintRevolute.Anchor = new Vector2(-1.0f, 1.5f);
            constraintRevolute.LowerAngle = -1.0f; // In radians
            constraintRevolute.UpperAngle = 0.5f; // In radians
            constraintRevolute.EnableLimit = true;
            constraintRevolute.MaxMotorTorque = 10.0f;
            constraintRevolute.MotorSpeed = 0.0f;
            constraintRevolute.EnableMotor = true;

            // Create a ConstraintRope2D
            CreateFlag("ConstraintRope2D", -4.97f, 1.0f); // Display Text3D flag
            Node boxRopeNode = box.Clone(CreateMode.REPLICATED);
            tempBody = boxRopeNode.GetComponent<RigidBody2D>();
            tempBody.BodyType = BodyType2D.BT_STATIC;
            Node ballRopeNode = ball.Clone(CreateMode.REPLICATED);
            boxRopeNode.Position = (new Vector3(-3.7f, 0.7f, 0.0f));
            ballRopeNode.Position = (new Vector3(-4.5f, 0.0f, 0.0f));

            ConstraintRope2D constraintRope = boxRopeNode.CreateComponent<ConstraintRope2D>();
            constraintRope.OtherBody = ballRopeNode.GetComponent<RigidBody2D>(); // Constrain ball to box
            constraintRope.OwnerBodyAnchor = new Vector2(0.0f, -0.5f); // Offset from box (OwnerBody) : the rope is rigid from OwnerBody center to this ownerBodyAnchor
            constraintRope.MaxLength = 0.9f; // Rope length
            constraintRope.CollideConnected = true;

            // Create a ConstraintWeld2D
            CreateFlag("ConstraintWeld2D", -2.45f, 1.0f); // Display Text3D flag
            Node boxWeldNode = box.Clone(CreateMode.REPLICATED);
            Node ballWeldNode = ball.Clone(CreateMode.REPLICATED);
            boxWeldNode.Position = (new Vector3(-0.5f, 0.0f, 0.0f));
            ballWeldNode.Position = (new Vector3(-2.0f, 0.0f, 0.0f));

            ConstraintWeld2D constraintWeld = boxWeldNode.CreateComponent<ConstraintWeld2D>();
            constraintWeld.OtherBody = ballWeldNode.GetComponent<RigidBody2D>(); // Constrain ball to box
            constraintWeld.Anchor = boxWeldNode.Position2D;
            constraintWeld.FrequencyHz = 4.0f;
            constraintWeld.DampingRatio = 0.5f;

            // Create a ConstraintWheel2D
            CreateFlag("ConstraintWheel2D", 2.53f, 1.0f); // Display Text3D flag
            Node boxWheelNode = box.Clone(CreateMode.REPLICATED);
            Node ballWheelNode = ball.Clone(CreateMode.REPLICATED);
            boxWheelNode.Position = (new Vector3(3.8f, 0.0f, 0.0f));
            ballWheelNode.Position = (new Vector3(3.8f, 0.9f, 0.0f));

            ConstraintWheel2D constraintWheel = boxWheelNode.CreateComponent<ConstraintWheel2D>();
            constraintWheel.OtherBody = ballWheelNode.GetComponent<RigidBody2D>(); // Constrain ball to box
            constraintWheel.Anchor = ballWheelNode.Position2D;
            constraintWheel.Axis = new Vector2(0.0f, 1.0f);
            constraintWheel.EnableMotor = true;
            constraintWheel.MaxMotorTorque = 1.0f;
            constraintWheel.MotorSpeed = 0.0f;
            constraintWheel.FrequencyHz = 4.0f;
            constraintWheel.DampingRatio = 0.5f;
            constraintWheel.CollideConnected = true; // doesn't work
        }
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();
            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            // Also create a DebugRenderer component so that we can draw debug geometry
            scene.CreateComponent<Octree>();
            scene.CreateComponent<DebugRenderer>();

            // Create scene node & StaticModel component for showing a static plane
            var planeNode = scene.CreateChild("Plane");
            planeNode.Scale =new Vector3(100.0f, 1.0f, 100.0f);
            var planeObject = planeNode.CreateComponent<StaticModel>();
            planeObject.Model=cache.Get<Model>("Models/Plane.mdl");
            planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

            // Create a Zone component for ambient lighting & fog control
            var zoneNode = scene.CreateChild("Zone");
            var zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor=new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor=new Color(0.5f, 0.5f, 0.7f);
            zone.FogStart=100.0f;
            zone.FogEnd=300.0f;

            // Create a directional light to the world. Enable cascaded shadows on it
            var lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            var light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows=true;
            light.ShadowBias=new BiasParameters(0.00025f, 0.5f);
            // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
            light.ShadowCascade=new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);

            // Create some mushrooms
            const uint numMushrooms = 240;
            for (uint i = 0; i < numMushrooms; ++i)
            {
                var mushroomNode = scene.CreateChild("Mushroom");
                mushroomNode.Position = new Vector3(NextRandom(90.0f) - 45.0f, 0.0f, NextRandom(90.0f) - 45.0f);
                mushroomNode.Rotation = new Quaternion(0.0f, NextRandom(360.0f), 0.0f);
                mushroomNode.SetScale(0.5f + NextRandom(2.0f));
                StaticModel mushroomObject = mushroomNode.CreateComponent<StaticModel>();
                mushroomObject.Model=cache.Get<Model>("Models/Mushroom.mdl");
                mushroomObject.SetMaterial(cache.Get<Material>("Materials/Mushroom.xml"));
                mushroomObject.CastShadows=true;
            }

            // Create randomly sized boxes. If boxes are big enough, make them occluders
            const uint numBoxes = 20;
            for (uint i = 0; i < numBoxes; ++i)
            {
                var boxNode = scene.CreateChild("Box");
                float size = 1.0f + NextRandom(10.0f);
                boxNode.Position=new Vector3(NextRandom(80.0f) - 40.0f, size * 0.5f, NextRandom(80.0f) - 40.0f);
                boxNode.SetScale(size);
                StaticModel boxObject = boxNode.CreateComponent<StaticModel>();
                boxObject.Model = cache.Get<Model>("Models/Box.mdl");
                boxObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));
                boxObject.CastShadows=true;
                if (size >= 3.0f)
                    boxObject.Occluder=true;
            }

            // Create the cameras. Limit far clip distance to match the fog
            CameraNode = scene.CreateChild("Camera");
            Camera camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 300.0f;

            // Parent the rear camera node to the front camera node and turn it 180 degrees to face backward
            // Here, we use the angle-axis constructor for Quaternion instead of the usual Euler angles
            rearCameraNode = CameraNode.CreateChild("RearCamera");
            rearCameraNode.Rotate(Quaternion.FromAxisAngle(Vector3.UnitY, 180.0f), TransformSpace.TS_LOCAL);

            Camera rearCamera = rearCameraNode.CreateComponent<Camera>();
            rearCamera.FarClip = 300.0f;

            // Because the rear viewport is rather small, disable occlusion culling from it. Use the camera's
            // "view override flags" for this. We could also disable eg. shadows or force low material quality
            // if we wanted
            rearCamera.ViewOverrideFlags = Constants.VO_DISABLE_OCCLUSION;

            // Set an initial position for the front camera scene node above the plane
            CameraNode.Position = new Vector3(0.0f, 5.0f, 0.0f);
        }
示例#16
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            scene = new Scene();

            // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will
            // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it
            // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically
            // optimizing manner
            scene.CreateComponent<Octree>();

            // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple
            // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger
            // (100 x 100 world units)
            Node planeNode = scene.CreateChild("Plane");
            planeNode.Scale=new Vector3(100.0f, 1.0f, 100.0f);
            StaticModel planeObject = planeNode.CreateComponent<StaticModel>();
            planeObject.Model = (cache.Get<Model>("Models/Plane.mdl"));
            planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

            // Create a point light to the world so that we can see something.
            Node lightNode = scene.CreateChild("PointLight");
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_POINT;
            light.Range = (10.0f);

            // Create light animation
            ObjectAnimation lightAnimation=new ObjectAnimation();

            // Create light position animation
            ValueAnimation positionAnimation=new ValueAnimation();
            // Use spline interpolation method
            positionAnimation.InterpolationMethod= InterpMethod.IM_SPLINE;
            // Set spline tension
            positionAnimation.SplineTension=0.7f;

            positionAnimation.SetKeyFrame(0.0f, new Vector3(-30.0f, 5.0f, -30.0f));
            positionAnimation.SetKeyFrame(1.0f, new Vector3(30.0f, 5.0f, -30.0f));
            positionAnimation.SetKeyFrame(2.0f, new Vector3(30.0f, 5.0f, 30.0f));
            positionAnimation.SetKeyFrame(3.0f, new Vector3(-30.0f, 5.0f, 30.0f));
            positionAnimation.SetKeyFrame(4.0f, new Vector3(-30.0f, 5.0f, -30.0f));
            // Set position animation
            lightAnimation.AddAttributeAnimation("Position", positionAnimation, WrapMode.WM_LOOP, 1f);

            // Create text animation
            /*
            ValueAnimation textAnimation=new ValueAnimation();
            textAnimation.SetKeyFrame(0.0f, "WHITE");
            textAnimation.SetKeyFrame(1.0f, "RED");
            textAnimation.SetKeyFrame(2.0f, "YELLOW");
            textAnimation.SetKeyFrame(3.0f, "GREEN");
            textAnimation.SetKeyFrame(4.0f, "WHITE");
            var uiElement = UI.Root.GetChild("animatingText", false);
            uiElement.SetAttributeAnimation("Text", textAnimation, WrapMode.Loop, 1f);
            */

            // Create light color animation
            ValueAnimation colorAnimation=new ValueAnimation();
            colorAnimation.SetKeyFrame(0.0f, Color.White);
            colorAnimation.SetKeyFrame(1.0f, Color.Red);
            colorAnimation.SetKeyFrame(2.0f, Color.Yellow);
            colorAnimation.SetKeyFrame(3.0f, Color.Green);
            colorAnimation.SetKeyFrame(4.0f, Color.White);
            // Set Light component's color animation
            lightAnimation.AddAttributeAnimation("@Light/Color", colorAnimation, WrapMode.WM_LOOP, 1f);

            // Apply light animation to light node
            lightNode.ObjectAnimation=lightAnimation;

            // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a
            // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains
            // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll
            // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the
            // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the
            // scene.
            const uint numObjects = 200;
            for (uint i = 0; i < numObjects; ++i)
            {
                Node mushroomNode = scene.CreateChild("Mushroom");
                mushroomNode.Position = (new Vector3(NextRandom(90.0f) - 45.0f, 0.0f, NextRandom(90.0f) - 45.0f));
                mushroomNode.Rotation=new Quaternion(0.0f, NextRandom(360.0f), 0.0f);
                mushroomNode.SetScale(0.5f + NextRandom(2.0f));
                StaticModel mushroomObject = mushroomNode.CreateComponent<StaticModel>();
                mushroomObject.Model = (cache.Get<Model>("Models/Mushroom.mdl"));
                mushroomObject.SetMaterial(cache.Get<Material>("Materials/Mushroom.xml"));
            }

            // Create a scene node for the camera, which we will move around
            // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically)
            CameraNode = scene.CreateChild("Camera");
            CameraNode.CreateComponent<Camera>();

            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = (new Vector3(0.0f, 5.0f, 0.0f));
        }
示例#17
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();

            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            // Also create a DebugRenderer component so that we can draw debug geometry
            scene.CreateComponent<Octree>();
            scene.CreateComponent<DebugRenderer>();

            // Create scene node & StaticModel component for showing a static plane
            Node planeNode = scene.CreateChild("Plane");
            planeNode.Scale = new Vector3(100.0f, 1.0f, 100.0f);
            StaticModel planeObject = planeNode.CreateComponent<StaticModel>();
            planeObject.Model = (cache.Get<Model>("Models/Plane.mdl"));
            planeObject.SetMaterial(cache.Get<Material>("Materials/StoneTiled.xml"));

            // Create a Zone component for ambient lighting & fog control
            Node zoneNode = scene.CreateChild("Zone");
            Zone zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.15f, 0.15f, 0.15f);
            zone.FogColor = new Color(0.5f, 0.5f, 0.7f);
            zone.FogStart = 100.0f;
            zone.FogEnd = 300.0f;

            // Create a directional light to the world. Enable cascaded shadows on it
            Node lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.6f, -1.0f, 0.8f));
            Light light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.CastShadows = true;
            light.ShadowBias = new BiasParameters(0.00025f, 0.5f);
            // Set cascade splits at 10, 50 and 200 world units, fade shadows out at 80% of maximum shadow distance
            light.ShadowCascade = new CascadeParameters(10.0f, 50.0f, 200.0f, 0.0f, 0.8f);

            // Create randomly sized boxes. If boxes are big enough, make them occluders
            const uint numBoxes = 20;
            Node boxGroup = scene.CreateChild("Boxes");
            for (uint i = 0; i < numBoxes; ++i)
            {
                Node boxNode = boxGroup.CreateChild("Box");
                float size = 1.0f + NextRandom(10.0f);
                boxNode.Position = (new Vector3(NextRandom(80.0f) - 40.0f, size * 0.5f, NextRandom(80.0f) - 40.0f));
                boxNode.SetScale(size);
                StaticModel boxObject = boxNode.CreateComponent<StaticModel>();
                boxObject.Model = (cache.Get<Model>("Models/Box.mdl"));
                boxObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));
                boxObject.CastShadows = true;
                if (size >= 3.0f)
                    boxObject.Occluder = true;
            }

            // Create a DynamicNavigationMesh component to the scene root
            DynamicNavigationMesh navMesh = scene.CreateComponent<DynamicNavigationMesh>();
            // Set the agent height large enough to exclude the layers under boxes
            navMesh.AgentHeight = 10.0f;
            navMesh.CellHeight = 0.05f;
            navMesh.DrawObstacles = true;
            navMesh.DrawOffMeshConnections = true;
            // Create a Navigable component to the scene root. This tags all of the geometry in the scene as being part of the
            // navigation mesh. By default this is recursive, but the recursion could be turned off from Navigable
            scene.CreateComponent<Navigable>();
            // Add padding to the navigation mesh in Y-direction so that we can add objects on top of the tallest boxes
            // in the scene and still update the mesh correctly
            navMesh.Padding = new Vector3(0.0f, 10.0f, 0.0f);
            // Now build the navigation geometry. This will take some time. Note that the navigation mesh will prefer to use
            // physics geometry from the scene nodes, as it often is simpler, but if it can not find any (like in this example)
            // it will use renderable geometry instead
            navMesh.Build();

            // Create an off-mesh connection to each box to make them climbable (tiny boxes are skipped). A connection is built from 2 nodes.
            // Note that OffMeshConnections must be added before building the navMesh, but as we are adding Obstacles next, tiles will be automatically rebuilt.
            // Creating connections post-build here allows us to use FindNearestPoint() to procedurally set accurate positions for the connection
            CreateBoxOffMeshConnections(navMesh, boxGroup);

            // Create some mushrooms
            const uint numMushrooms = 100;
            for (uint i = 0; i < numMushrooms; ++i)
                CreateMushroom(new Vector3(NextRandom(90.0f) - 45.0f, 0.0f, NextRandom(90.0f) - 45.0f));

            // Create a CrowdManager component to the scene root
            crowdManager = scene.CreateComponent<CrowdManager>();
            var parameters = crowdManager.GetObstacleAvoidanceParams(0);
            // Set the params to "High (66)" setting
            parameters.VelBias = 0.5f;
            parameters.AdaptiveDivs = 7;
            parameters.AdaptiveRings = 3;
            parameters.AdaptiveDepth = 3;
            crowdManager.SetObstacleAvoidanceParams(0, parameters);

            // Create some movable barrels. We create them as crowd agents, as for moving entities it is less expensive and more convenient than using obstacles
            CreateMovingBarrels(navMesh);

            // Create Jack node that will follow the path
            SpawnJack(new Vector3(-5.0f, 0.0f, 20.0f), scene.CreateChild("Jacks"));

            // Create the camera. Limit far clip distance to match the fog
            CameraNode = new Node();
            Camera camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 300.0f;

            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = new Vector3(0.0f, 50.0f, 0.0f);
            Pitch = 80.0f;
            CameraNode.Rotation = new Quaternion(Pitch, Yaw, 0.0f);
        }
示例#18
0
        void CreateScene()
        {
            var cache = GetSubsystem<ResourceCache>();
            scene = new Scene();

            // Create octree, use default volume (-1000, -1000, -1000) to (1000, 1000, 1000)
            // Also create a DebugRenderer component so that we can draw debug geometry
            scene.CreateComponent<Octree>();
            scene.CreateComponent<DebugRenderer>();

            var zoneNode = scene.CreateChild("Zone");
            Zone zone = zoneNode.CreateComponent<Zone>();
            zone.SetBoundingBox(new BoundingBox(-1000.0f, 1000.0f));
            zone.AmbientColor = new Color(0.1f, 0.1f, 0.1f);
            zone.FogStart = 100.0f;
            zone.FogEnd = 300.0f;

            var lightNode = scene.CreateChild("DirectionalLight");
            lightNode.SetDirection(new Vector3(0.5f, -1.0f, 0.5f));
            var light = lightNode.CreateComponent<Light>();
            light.LightType = LightType.LIGHT_DIRECTIONAL;
            light.Color = new Color(0.2f, 0.2f, 0.2f);
            light.SpecularIntensity = 1.0f;

            for (int y = -5; y <= 5; ++y)
            {
                for (int x = -5; x <= 5; ++x)
                {
                    var floorNode = scene.CreateChild("FloorTile");
                    floorNode.Position = new Vector3(x * 20.5f, -0.5f, y * 20.5f);
                    floorNode.Scale = new Vector3(20.0f, 1.0f, 20.0f);
                    var floorObject = floorNode.CreateComponent<StaticModel>();
                    floorObject.Model = cache.Get<Model>("Models/Box.mdl");
                    floorObject.SetMaterial(cache.Get<Material>("Materials/Stone.xml"));
                }
            }

            // Create groups of mushrooms, which act as shadow casters
            const uint numMushroomgroups = 25;
            const uint numMushrooms = 25;

            for (uint i = 0; i < numMushroomgroups; ++i)
            {
                var groupNode = scene.CreateChild("MushroomGroup");
                groupNode.Position = new Vector3(NextRandom(190.0f) - 95.0f, 0.0f, NextRandom(190.0f) - 95.0f);

                for (uint j = 0; j < numMushrooms; ++j)
                {
                    var mushroomNode = groupNode.CreateChild("Mushroom");
                    mushroomNode.Position = new Vector3(NextRandom(25.0f) - 12.5f, 0.0f, NextRandom(25.0f) - 12.5f);
                    mushroomNode.Rotation = new Quaternion(0.0f, NextRandom() * 360.0f, 0.0f);
                    mushroomNode.SetScale(1.0f + NextRandom() * 4.0f);
                    var mushroomObject = mushroomNode.CreateComponent<StaticModel>();
                    mushroomObject.Model = cache.Get<Model>("Models/Mushroom.mdl");
                    mushroomObject.SetMaterial(cache.Get<Material>("Materials/Mushroom.xml"));
                    mushroomObject.CastShadows = true;
                }
            }

            // Create billboard sets (floating smoke)
            const uint numBillboardnodes = 25;
            const uint numBillboards = 10;

            for (uint i = 0; i < numBillboardnodes; ++i)
            {
                var smokeNode = scene.CreateChild("Smoke");
                smokeNode.Position = new Vector3(NextRandom(200.0f) - 100.0f, NextRandom(20.0f) + 10.0f, NextRandom(200.0f) - 100.0f);

                var billboardObject = smokeNode.CreateComponent<BillboardSet>();
                billboardObject.NumBillboards = numBillboards;
                billboardObject.Material = cache.Get<Material>("Materials/LitSmoke.xml");
                billboardObject.Sorted = true;

                for (uint j = 0; j < numBillboards; ++j)
                {
                    var bb = billboardObject.GetBillboard(j);
                    bb.Position = new Vector3(NextRandom(12.0f) - 6.0f, NextRandom(8.0f) - 4.0f, NextRandom(12.0f) - 6.0f);
                    bb.Size = new Vector2(NextRandom(2.0f) + 3.0f, NextRandom(2.0f) + 3.0f);
                    bb.Rotation = NextRandom() * 360.0f;
                    bb.Enabled = true;
                }

                // After modifying the billboards, they need to be "commited" so that the BillboardSet updates its internals
                billboardObject.Commit();
            }

            // Create shadow casting spotlights
            const uint numLights = 9;

            for (uint i = 0; i < numLights; ++i)
            {
                lightNode = scene.CreateChild("SpotLight");
                light = lightNode.CreateComponent<Light>();

                float angle = 0.0f;

                Vector3 position = new Vector3((i % 3) * 60.0f - 60.0f, 45.0f, (i / 3) * 60.0f - 60.0f);
                Color color = new Color(((i + 1) & 1) * 0.5f + 0.5f, (((i + 1) >> 1) & 1) * 0.5f + 0.5f, (((i + 1) >> 2) & 1) * 0.5f + 0.5f);

                lightNode.Position = position;
                lightNode.SetDirection(new Vector3((float)Math.Sin(angle), -1.5f, (float)Math.Cos(angle)));

                light.LightType = LightType.LIGHT_SPOT;
                light.Range = 90.0f;
                light.RampTexture = cache.Get<Texture2D>("Textures/RampExtreme.png");
                light.Fov = 45.0f;
                light.Color = color;
                light.SpecularIntensity = 1.0f;
                light.CastShadows = true;
                light.ShadowBias = new BiasParameters(0.00002f, 0.0f);

                // Configure shadow fading for the lights. When they are far away enough, the lights eventually become unshadowed for
                // better GPU performance. Note that we could also set the maximum distance for each object to cast shadows
                light.ShadowFadeDistance = 100.0f; // Fade start distance
                light.ShadowDistance = 125.0f; // Fade end distance, shadows are disabled
                                               // Set half resolution for the shadow maps for increased performance
                light.ShadowResolution = 0.5f;
                // The spot lights will not have anything near them, so move the near plane of the shadow camera farther
                // for better shadow depth resolution
                light.ShadowNearFarRatio = 0.01f;
            }

            // Create the camera. Limit far clip distance to match the fog
            CameraNode = scene.CreateChild("Camera");
            var camera = CameraNode.CreateComponent<Camera>();
            camera.FarClip = 300.0f;
            // Set an initial position for the camera scene node above the plane
            CameraNode.Position = new Vector3(0.0f, 5.0f, 0.0f);
        }