/// <summary> /// Do your analysis. This method is called once per segment (typically one-minute segments). /// </summary> /// <param name="recording"></param> /// <param name="configuration"></param> /// <param name="segmentStartOffset"></param> /// <param name="getSpectralIndexes"></param> /// <param name="outputDirectory"></param> /// <param name="imageWidth"></param> /// <returns></returns> public override RecognizerResults Recognize(AudioRecording recording, Config configuration, TimeSpan segmentStartOffset, Lazy <IndexCalculateResult[]> getSpectralIndexes, DirectoryInfo outputDirectory, int?imageWidth) { var recognizerConfig = new LitoriaNasutaConfig(); recognizerConfig.ReadConfigFile(configuration); // BETTER TO SET THESE. IGNORE USER! // this default framesize seems to work const int frameSize = 1024; const double windowOverlap = 0.0; // i: MAKE SONOGRAM var sonoConfig = new SonogramConfig { SourceFName = recording.BaseName, WindowSize = frameSize, WindowOverlap = windowOverlap, // use the default HAMMING window //WindowFunction = WindowFunctions.HANNING.ToString(), //WindowFunction = WindowFunctions.NONE.ToString(), // if do not use noise reduction can get a more sensitive recogniser. //NoiseReductionType = NoiseReductionType.None NoiseReductionType = NoiseReductionType.Standard, NoiseReductionParameter = 0.0, }; TimeSpan recordingDuration = recording.WavReader.Time; int sr = recording.SampleRate; double freqBinWidth = sr / (double)sonoConfig.WindowSize; int minBin = (int)Math.Round(recognizerConfig.MinHz / freqBinWidth) + 1; int maxBin = (int)Math.Round(recognizerConfig.MaxHz / freqBinWidth) + 1; var decibelThreshold = 3.0; BaseSonogram sonogram = new SpectrogramStandard(sonoConfig, recording.WavReader); // ###################################################################### // ii: DO THE ANALYSIS AND RECOVER SCORES OR WHATEVER int rowCount = sonogram.Data.GetLength(0); double[] amplitudeArray = MatrixTools.GetRowAveragesOfSubmatrix(sonogram.Data, 0, minBin, rowCount - 1, maxBin); //double[] topBand = MatrixTools.GetRowAveragesOfSubmatrix(sonogram.Data, 0, maxBin + 3, (rowCount - 1), maxBin + 9); //double[] botBand = MatrixTools.GetRowAveragesOfSubmatrix(sonogram.Data, 0, minBin - 3, (rowCount - 1), minBin - 9); // ii: DO THE ANALYSIS AND RECOVER SCORES OR WHATEVER var acousticEvents = AcousticEvent.ConvertScoreArray2Events( amplitudeArray, recognizerConfig.MinHz, recognizerConfig.MaxHz, sonogram.FramesPerSecond, freqBinWidth, decibelThreshold, recognizerConfig.MinDuration, recognizerConfig.MaxDuration, segmentStartOffset); double[,] hits = null; var prunedEvents = new List <AcousticEvent>(); acousticEvents.ForEach(ae => { ae.SpeciesName = recognizerConfig.SpeciesName; ae.SegmentDurationSeconds = recordingDuration.TotalSeconds; ae.SegmentStartSeconds = segmentStartOffset.TotalSeconds; ae.Name = recognizerConfig.AbbreviatedSpeciesName; }); var thresholdedPlot = new double[amplitudeArray.Length]; for (int x = 0; x < amplitudeArray.Length; x++) { if (amplitudeArray[x] > decibelThreshold) { thresholdedPlot[x] = amplitudeArray[x]; } } var maxDb = amplitudeArray.MaxOrDefault(); double[] normalisedScores; double normalisedThreshold; DataTools.Normalise(thresholdedPlot, decibelThreshold, out normalisedScores, out normalisedThreshold); var text = string.Format($"{this.DisplayName} (Fullscale={maxDb:f1}dB)"); var plot = new Plot(text, normalisedScores, normalisedThreshold); if (true) { // display a variety of debug score arrays DataTools.Normalise(amplitudeArray, decibelThreshold, out normalisedScores, out normalisedThreshold); var amplPlot = new Plot("Band amplitude", normalisedScores, normalisedThreshold); var debugPlots = new List <Plot> { plot, amplPlot }; // NOTE: This DrawDebugImage() method can be over-written in this class. var debugImage = DrawDebugImage(sonogram, acousticEvents, debugPlots, hits); var debugPath = FilenameHelpers.AnalysisResultPath(outputDirectory, recording.BaseName, this.SpeciesName, "png", "DebugSpectrogram"); debugImage.Save(debugPath); } return(new RecognizerResults() { Sonogram = sonogram, Hits = hits, Plots = plot.AsList(), Events = acousticEvents, }); }
/// <summary> /// Do your analysis. This method is called once per segment (typically one-minute segments). /// </summary> /// <param name="recording"></param> /// <param name="configuration"></param> /// <param name="segmentStartOffset"></param> /// <param name="getSpectralIndexes"></param> /// <param name="outputDirectory"></param> /// <param name="imageWidth"></param> /// <returns></returns> public override RecognizerResults Recognize(AudioRecording recording, Config configuration, TimeSpan segmentStartOffset, Lazy <IndexCalculateResult[]> getSpectralIndexes, DirectoryInfo outputDirectory, int?imageWidth) { var recognizerConfig = new LitoriaNasutaConfig(); recognizerConfig.ReadConfigFile(configuration); // common properties string speciesName = configuration[AnalysisKeys.SpeciesName] ?? "<no name>"; string abbreviatedSpeciesName = configuration[AnalysisKeys.AbbreviatedSpeciesName] ?? "<no.sp>"; // BETTER TO SET THESE. IGNORE USER! // This framesize is large because the oscillation we wish to detect is due to repeated croaks // having an interval of about 0.6 seconds. The overlap is also required to give smooth oscillation. const int frameSize = 1024; const double windowOverlap = 0.5; // i: MAKE SONOGRAM var sonoConfig = new SonogramConfig { SourceFName = recording.BaseName, WindowSize = frameSize, WindowOverlap = windowOverlap, // use the default HAMMING window //WindowFunction = WindowFunctions.HANNING.ToString(), //WindowFunction = WindowFunctions.NONE.ToString(), // if do not use noise reduction can get a more sensitive recogniser. //NoiseReductionType = NoiseReductionType.None NoiseReductionType = NoiseReductionType.Standard, NoiseReductionParameter = 0.0, }; // Get the recording TimeSpan recordingDuration = recording.WavReader.Time; int sr = recording.SampleRate; double freqBinWidth = sr / (double)sonoConfig.WindowSize; double framesPerSecond = sr / (sonoConfig.WindowSize * (1 - windowOverlap)); // Get the alorithm parameters int minBin = (int)Math.Round(recognizerConfig.MinHz / freqBinWidth) + 1; int maxBin = (int)Math.Round(recognizerConfig.MaxHz / freqBinWidth) + 1; var decibelThreshold = 9.0; BaseSonogram sonogram = new SpectrogramStandard(sonoConfig, recording.WavReader); // ###################################################################### // ii: DO THE ANALYSIS AND RECOVER SCORES OR WHATEVER int rowCount = sonogram.Data.GetLength(0); // get the freq band as set by min and max Herz var frogBand = MatrixTools.Submatrix(sonogram.Data, 0, minBin, rowCount - 1, maxBin); // Now look for spectral maxima. For L.caerulea, the max should lie around 1100Hz +/-150 Hz. // Skip over spectra where maximum is not in correct location. int buffer = 200; var croakScoreArray = new double[rowCount]; var hzAtTopOfTopBand = recognizerConfig.DominantFreq + buffer; var hzAtBotOfTopBand = recognizerConfig.DominantFreq - buffer; var binAtTopOfTopBand = (int)Math.Round((hzAtTopOfTopBand - recognizerConfig.MinHz) / freqBinWidth); var binAtBotOfTopBand = (int)Math.Round((hzAtBotOfTopBand - recognizerConfig.MinHz) / freqBinWidth); var hzAtTopOfBotBand = recognizerConfig.SubdominantFreq + buffer; var hzAtBotOfBotBand = recognizerConfig.SubdominantFreq - buffer; var binAtTopOfBotBand = (int)Math.Round((hzAtTopOfBotBand - recognizerConfig.MinHz) / freqBinWidth); var binAtBotOfBotBand = (int)Math.Round((hzAtBotOfBotBand - recognizerConfig.MinHz) / freqBinWidth); // scan the frog band and get the decibel value of those spectra which have their maximum within the correct subband. for (int x = 0; x < rowCount; x++) { //extract spectrum var spectrum = MatrixTools.GetRow(frogBand, x); int maxIndex1 = DataTools.GetMaxIndex(spectrum); double maxValueInTopSubband = spectrum[maxIndex1]; if (maxValueInTopSubband < decibelThreshold) { continue; } // if max value not in correct sub-band then go to next spectrum if (maxIndex1 > binAtTopOfTopBand && maxIndex1 < binAtBotOfTopBand) { continue; } // minimise values in top sub-band so can find maximum in bottom sub-band for (int y = binAtBotOfTopBand; y < binAtTopOfTopBand; y++) { spectrum[y] = 0.0; } int maxIndex2 = DataTools.GetMaxIndex(spectrum); // if max value properly placed in top and bottom sub-bands then assign maxValue to croakScore array if (maxIndex2 < binAtTopOfBotBand && maxIndex2 > binAtBotOfTopBand) { croakScoreArray[x] = maxValueInTopSubband; } } // Perpare a normalised plot for later display with spectrogram double[] normalisedScores; double normalisedThreshold; DataTools.Normalise(croakScoreArray, decibelThreshold, out normalisedScores, out normalisedThreshold); var text1 = string.Format($"Croak scores (threshold={decibelThreshold})"); var croakPlot1 = new Plot(text1, normalisedScores, normalisedThreshold); // extract potential croak events from the array of croak candidate var croakEvents = AcousticEvent.ConvertScoreArray2Events( croakScoreArray, recognizerConfig.MinHz, recognizerConfig.MaxHz, sonogram.FramesPerSecond, freqBinWidth, recognizerConfig.EventThreshold, recognizerConfig.MinCroakDuration, recognizerConfig.MaxCroakDuration, segmentStartOffset); // add necesary info into the candidate events double[,] hits = null; var prunedEvents = new List <AcousticEvent>(); foreach (var ae in croakEvents) { // add additional info ae.SpeciesName = speciesName; ae.SegmentDurationSeconds = recordingDuration.TotalSeconds; ae.SegmentStartSeconds = segmentStartOffset.TotalSeconds; ae.Name = recognizerConfig.AbbreviatedSpeciesName; prunedEvents.Add(ae); } /* * // DO NOT LOOK FOR A PULSE TRAIN because recording from Karlina does not have one for L.nasuta. * * // With those events that survive the above Array2Events process, we now extract a new array croak scores * croakScoreArray = AcousticEvent.ExtractScoreArrayFromEvents(prunedEvents, rowCount, recognizerConfig.AbbreviatedSpeciesName); * DataTools.Normalise(croakScoreArray, decibelThreshold, out normalisedScores, out normalisedThreshold); * var text2 = string.Format($"Croak events (threshold={decibelThreshold})"); * var croakPlot2 = new Plot(text2, normalisedScores, normalisedThreshold); * * * // Look for oscillations in the difference array * // duration of DCT in seconds * croakScoreArray = DataTools.filterMovingAverageOdd(croakScoreArray, 5); * double dctDuration = recognizerConfig.DctDuration; * // minimum acceptable value of a DCT coefficient * double dctThreshold = recognizerConfig.DctThreshold; * double minOscRate = 1 / recognizerConfig.MaxPeriod; * double maxOscRate = 1 / recognizerConfig.MinPeriod; * var dctScores = Oscillations2012.DetectOscillations(croakScoreArray, framesPerSecond, dctDuration, minOscRate, maxOscRate, dctThreshold); * * * // ###################################################################### * // ii: DO THE ANALYSIS AND RECOVER SCORES OR WHATEVER * var events = AcousticEvent.ConvertScoreArray2Events(dctScores, recognizerConfig.MinHz, recognizerConfig.MaxHz, sonogram.FramesPerSecond, * freqBinWidth, recognizerConfig.EventThreshold, * recognizerConfig.MinDuration, recognizerConfig.MaxDuration); * prunedEvents = new List<AcousticEvent>(); * foreach (var ae in events) * { * // add additional info * ae.SpeciesName = speciesName; * ae.SegmentStartOffset = segmentStartOffset; * ae.AnalysisIdealSegmentDuration = recordingDuration; * ae.Name = recognizerConfig.AbbreviatedSpeciesName; * prunedEvents.Add(ae); * } * var scoresPlot = new Plot(this.DisplayName, dctScores, recognizerConfig.EventThreshold); */ // do a recognizer test. if (MainEntry.InDEBUG) { //TestTools.RecognizerScoresTest(scores, new FileInfo(recording.FilePath)); //AcousticEvent.TestToCompareEvents(prunedEvents, new FileInfo(recording.FilePath)); } var scoresPlot = new Plot(this.DisplayName, croakScoreArray, recognizerConfig.EventThreshold); if (true) { // display a variety of debug score arrays // calculate amplitude at location double[] amplitudeArray = MatrixTools.SumRows(frogBand); DataTools.Normalise(amplitudeArray, decibelThreshold, out normalisedScores, out normalisedThreshold); var amplPlot = new Plot("Band amplitude", normalisedScores, normalisedThreshold); var debugPlots = new List <Plot> { scoresPlot, /*croakPlot2,*/ croakPlot1, amplPlot }; // NOTE: This DrawDebugImage() method can be over-written in this class. var debugImage = DrawDebugImage(sonogram, prunedEvents, debugPlots, hits); var debugPath = FilenameHelpers.AnalysisResultPath(outputDirectory, recording.BaseName, this.SpeciesName, "png", "DebugSpectrogram"); debugImage.Save(debugPath); } return(new RecognizerResults() { Sonogram = sonogram, Hits = hits, Plots = scoresPlot.AsList(), Events = prunedEvents, //Events = events }); }