MLModelName
ScoreThreshold
MLModel
You can use the GetMLModel operation to view the contents of the updated data element.
GetMLModel
public object Execute(ExecutorContext context) { var cmdletContext = context as CmdletContext; // create request var request = new Amazon.MachineLearning.Model.UpdateMLModelRequest(); if (cmdletContext.MLModelId != null) { request.MLModelId = cmdletContext.MLModelId; } if (cmdletContext.MLModelName != null) { request.MLModelName = cmdletContext.MLModelName; } if (cmdletContext.ScoreThreshold != null) { request.ScoreThreshold = cmdletContext.ScoreThreshold.Value; } CmdletOutput output; // issue call var client = Client ?? CreateClient(_CurrentCredentials, _RegionEndpoint); try { var response = CallAWSServiceOperation(client, request); object pipelineOutput = null; pipelineOutput = cmdletContext.Select(response, this); output = new CmdletOutput { PipelineOutput = pipelineOutput, ServiceResponse = response }; } catch (Exception e) { output = new CmdletOutput { ErrorResponse = e }; } return(output); }
/// <summary> /// Initiates the asynchronous execution of the UpdateMLModel operation. /// </summary> /// /// <param name="request">Container for the necessary parameters to execute the UpdateMLModel operation.</param> /// <param name="cancellationToken"> /// A cancellation token that can be used by other objects or threads to receive notice of cancellation. /// </param> /// <returns>The task object representing the asynchronous operation.</returns> public Task<UpdateMLModelResponse> UpdateMLModelAsync(UpdateMLModelRequest request, System.Threading.CancellationToken cancellationToken = default(CancellationToken)) { var marshaller = new UpdateMLModelRequestMarshaller(); var unmarshaller = UpdateMLModelResponseUnmarshaller.Instance; return InvokeAsync<UpdateMLModelRequest,UpdateMLModelResponse>(request, marshaller, unmarshaller, cancellationToken); }
/// <summary> /// Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of an <code>MLModel</code>. /// /// /// <para> /// You can use the <a>GetMLModel</a> operation to view the contents of the updated data /// element. /// </para> /// </summary> /// <param name="mlModelId">The ID assigned to the <code>MLModel</code> during creation.</param> /// <param name="mlModelName">A user-supplied name or description of the <code>MLModel</code>.</param> /// <param name="scoreThreshold">The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction. Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</param> /// <param name="cancellationToken"> /// A cancellation token that can be used by other objects or threads to receive notice of cancellation. /// </param> /// /// <returns>The response from the UpdateMLModel service method, as returned by MachineLearning.</returns> /// <exception cref="Amazon.MachineLearning.Model.InternalServerException"> /// An error on the server occurred when trying to process a request. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.InvalidInputException"> /// An error on the client occurred. Typically, the cause is an invalid input value. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.ResourceNotFoundException"> /// A specified resource cannot be located. /// </exception> public Task<UpdateMLModelResponse> UpdateMLModelAsync(string mlModelId, string mlModelName, float scoreThreshold, System.Threading.CancellationToken cancellationToken = default(CancellationToken)) { var request = new UpdateMLModelRequest(); request.MLModelId = mlModelId; request.MLModelName = mlModelName; request.ScoreThreshold = scoreThreshold; return UpdateMLModelAsync(request, cancellationToken); }
internal UpdateMLModelResponse UpdateMLModel(UpdateMLModelRequest request) { var marshaller = new UpdateMLModelRequestMarshaller(); var unmarshaller = UpdateMLModelResponseUnmarshaller.Instance; return Invoke<UpdateMLModelRequest,UpdateMLModelResponse>(request, marshaller, unmarshaller); }
/// <summary> /// Updates the <code>MLModelName</code> and the <code>ScoreThreshold</code> of an <code>MLModel</code>. /// /// /// <para> /// You can use the <code>GetMLModel</code> operation to view the contents of the updated /// data element. /// </para> /// </summary> /// <param name="mlModelId">The ID assigned to the <code>MLModel</code> during creation.</param> /// <param name="mlModelName">A user-supplied name or description of the <code>MLModel</code>.</param> /// <param name="scoreThreshold">The <code>ScoreThreshold</code> used in binary classification <code>MLModel</code> that marks the boundary between a positive prediction and a negative prediction. Output values greater than or equal to the <code>ScoreThreshold</code> receive a positive result from the <code>MLModel</code>, such as <code>true</code>. Output values less than the <code>ScoreThreshold</code> receive a negative response from the <code>MLModel</code>, such as <code>false</code>.</param> /// /// <returns>The response from the UpdateMLModel service method, as returned by MachineLearning.</returns> /// <exception cref="Amazon.MachineLearning.Model.InternalServerException"> /// An error on the server occurred when trying to process a request. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.InvalidInputException"> /// An error on the client occurred. Typically, the cause is an invalid input value. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.ResourceNotFoundException"> /// A specified resource cannot be located. /// </exception> public UpdateMLModelResponse UpdateMLModel(string mlModelId, string mlModelName, float scoreThreshold) { var request = new UpdateMLModelRequest(); request.MLModelId = mlModelId; request.MLModelName = mlModelName; request.ScoreThreshold = scoreThreshold; return UpdateMLModel(request); }
private Amazon.MachineLearning.Model.UpdateMLModelResponse CallAWSServiceOperation(IAmazonMachineLearning client, Amazon.MachineLearning.Model.UpdateMLModelRequest request) { Utils.Common.WriteVerboseEndpointMessage(this, client.Config, "Amazon Machine Learning", "UpdateMLModel"); try { #if DESKTOP return(client.UpdateMLModel(request)); #elif CORECLR return(client.UpdateMLModelAsync(request).GetAwaiter().GetResult()); #else #error "Unknown build edition" #endif } catch (AmazonServiceException exc) { var webException = exc.InnerException as System.Net.WebException; if (webException != null) { throw new Exception(Utils.Common.FormatNameResolutionFailureMessage(client.Config, webException.Message), webException); } throw; } }
/// <summary> /// Initiates the asynchronous execution of the UpdateMLModel operation. /// </summary> /// /// <param name="request">Container for the necessary parameters to execute the UpdateMLModel operation on AmazonMachineLearningClient.</param> /// <param name="callback">An AsyncCallback delegate that is invoked when the operation completes.</param> /// <param name="state">A user-defined state object that is passed to the callback procedure. Retrieve this object from within the callback /// procedure using the AsyncState property.</param> /// /// <returns>An IAsyncResult that can be used to poll or wait for results, or both; this value is also needed when invoking EndUpdateMLModel /// operation.</returns> public IAsyncResult BeginUpdateMLModel(UpdateMLModelRequest request, AsyncCallback callback, object state) { var marshaller = new UpdateMLModelRequestMarshaller(); var unmarshaller = UpdateMLModelResponseUnmarshaller.Instance; return BeginInvoke<UpdateMLModelRequest>(request, marshaller, unmarshaller, callback, state); }