MLModel
GetMLModel provides results in normal or verbose format.
GetMLModel
/// <summary> /// The realtime prediction endpoint for the given MLModel. /// </summary> public async Task<string> GetEndpointAsync() { if (null == this.endpoint) { GetMLModelRequest request = new GetMLModelRequest { MLModelId = ModelId }; this.endpoint = (await client.GetMLModelAsync(request).ConfigureAwait(false)).EndpointInfo.EndpointUrl; } return this.endpoint; }
public object Execute(ExecutorContext context) { var cmdletContext = context as CmdletContext; // create request var request = new Amazon.MachineLearning.Model.GetMLModelRequest(); if (cmdletContext.MLModelId != null) { request.MLModelId = cmdletContext.MLModelId; } if (cmdletContext.VerboseResponse != null) { request.Verbose = cmdletContext.VerboseResponse.Value; } CmdletOutput output; // issue call var client = Client ?? CreateClient(_CurrentCredentials, _RegionEndpoint); try { var response = CallAWSServiceOperation(client, request); object pipelineOutput = null; pipelineOutput = cmdletContext.Select(response, this); output = new CmdletOutput { PipelineOutput = pipelineOutput, ServiceResponse = response }; } catch (Exception e) { output = new CmdletOutput { ErrorResponse = e }; } return(output); }
/// <summary> /// Initiates the asynchronous execution of the GetMLModel operation. /// </summary> /// /// <param name="request">Container for the necessary parameters to execute the GetMLModel operation.</param> /// <param name="cancellationToken"> /// A cancellation token that can be used by other objects or threads to receive notice of cancellation. /// </param> /// <returns>The task object representing the asynchronous operation.</returns> public Task<GetMLModelResponse> GetMLModelAsync(GetMLModelRequest request, System.Threading.CancellationToken cancellationToken = default(CancellationToken)) { var marshaller = new GetMLModelRequestMarshaller(); var unmarshaller = GetMLModelResponseUnmarshaller.Instance; return InvokeAsync<GetMLModelRequest,GetMLModelResponse>(request, marshaller, unmarshaller, cancellationToken); }
/// <summary> /// Returns an <code>MLModel</code> that includes detailed metadata, and data source information /// as well as the current status of the <code>MLModel</code>. /// /// /// <para> /// <code>GetMLModel</code> provides results in normal or verbose format. /// </para> /// </summary> /// <param name="mlModelId">The ID assigned to the <code>MLModel</code> at creation.</param> /// <param name="verbose">Specifies whether the <code>GetMLModel</code> operation should return <code>Recipe</code>. If true, <code>Recipe</code> is returned. If false, <code>Recipe</code> is not returned.</param> /// <param name="cancellationToken"> /// A cancellation token that can be used by other objects or threads to receive notice of cancellation. /// </param> /// /// <returns>The response from the GetMLModel service method, as returned by MachineLearning.</returns> /// <exception cref="Amazon.MachineLearning.Model.InternalServerException"> /// An error on the server occurred when trying to process a request. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.InvalidInputException"> /// An error on the client occurred. Typically, the cause is an invalid input value. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.ResourceNotFoundException"> /// A specified resource cannot be located. /// </exception> public Task<GetMLModelResponse> GetMLModelAsync(string mlModelId, bool verbose, System.Threading.CancellationToken cancellationToken = default(CancellationToken)) { var request = new GetMLModelRequest(); request.MLModelId = mlModelId; request.Verbose = verbose; return GetMLModelAsync(request, cancellationToken); }
internal GetMLModelResponse GetMLModel(GetMLModelRequest request) { var marshaller = new GetMLModelRequestMarshaller(); var unmarshaller = GetMLModelResponseUnmarshaller.Instance; return Invoke<GetMLModelRequest,GetMLModelResponse>(request, marshaller, unmarshaller); }
/// <summary> /// Returns an <code>MLModel</code> that includes detailed metadata, data source information, /// and the current status of the <code>MLModel</code>. /// /// /// <para> /// <code>GetMLModel</code> provides results in normal or verbose format. /// </para> /// </summary> /// <param name="mlModelId">The ID assigned to the <code>MLModel</code> at creation.</param> /// <param name="verbose">Specifies whether the <code>GetMLModel</code> operation should return <code>Recipe</code>. If true, <code>Recipe</code> is returned. If false, <code>Recipe</code> is not returned.</param> /// /// <returns>The response from the GetMLModel service method, as returned by MachineLearning.</returns> /// <exception cref="Amazon.MachineLearning.Model.InternalServerException"> /// An error on the server occurred when trying to process a request. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.InvalidInputException"> /// An error on the client occurred. Typically, the cause is an invalid input value. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.ResourceNotFoundException"> /// A specified resource cannot be located. /// </exception> public GetMLModelResponse GetMLModel(string mlModelId, bool verbose) { var request = new GetMLModelRequest(); request.MLModelId = mlModelId; request.Verbose = verbose; return GetMLModel(request); }
/// <summary> /// Returns an <code>MLModel</code> that includes detailed metadata, data source information, /// and the current status of the <code>MLModel</code>. /// /// /// <para> /// <code>GetMLModel</code> provides results in normal or verbose format. /// </para> /// </summary> /// <param name="mlModelId">The ID assigned to the <code>MLModel</code> at creation.</param> /// /// <returns>The response from the GetMLModel service method, as returned by MachineLearning.</returns> /// <exception cref="Amazon.MachineLearning.Model.InternalServerException"> /// An error on the server occurred when trying to process a request. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.InvalidInputException"> /// An error on the client occurred. Typically, the cause is an invalid input value. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.ResourceNotFoundException"> /// A specified resource cannot be located. /// </exception> public GetMLModelResponse GetMLModel(string mlModelId) { var request = new GetMLModelRequest(); request.MLModelId = mlModelId; return GetMLModel(request); }
/// <summary> /// Initiates the asynchronous execution of the GetMLModel operation. /// </summary> /// /// <param name="request">Container for the necessary parameters to execute the GetMLModel operation on AmazonMachineLearningClient.</param> /// <param name="callback">An AsyncCallback delegate that is invoked when the operation completes.</param> /// <param name="state">A user-defined state object that is passed to the callback procedure. Retrieve this object from within the callback /// procedure using the AsyncState property.</param> /// /// <returns>An IAsyncResult that can be used to poll or wait for results, or both; this value is also needed when invoking EndGetMLModel /// operation.</returns> public IAsyncResult BeginGetMLModel(GetMLModelRequest request, AsyncCallback callback, object state) { var marshaller = new GetMLModelRequestMarshaller(); var unmarshaller = GetMLModelResponseUnmarshaller.Instance; return BeginInvoke<GetMLModelRequest>(request, marshaller, unmarshaller, callback, state); }
private Amazon.MachineLearning.Model.GetMLModelResponse CallAWSServiceOperation(IAmazonMachineLearning client, Amazon.MachineLearning.Model.GetMLModelRequest request) { Utils.Common.WriteVerboseEndpointMessage(this, client.Config, "Amazon Machine Learning", "GetMLModel"); try { #if DESKTOP return(client.GetMLModel(request)); #elif CORECLR return(client.GetMLModelAsync(request).GetAwaiter().GetResult()); #else #error "Unknown build edition" #endif } catch (AmazonServiceException exc) { var webException = exc.InnerException as System.Net.WebException; if (webException != null) { throw new Exception(Utils.Common.FormatNameResolutionFailureMessage(client.Config, webException.Message), webException); } throw; } }