public object Execute(ExecutorContext context) { var cmdletContext = context as CmdletContext; // create request var request = new Amazon.MachineLearning.Model.DeleteMLModelRequest(); if (cmdletContext.MLModelId != null) { request.MLModelId = cmdletContext.MLModelId; } CmdletOutput output; // issue call var client = Client ?? CreateClient(_CurrentCredentials, _RegionEndpoint); try { var response = CallAWSServiceOperation(client, request); object pipelineOutput = null; pipelineOutput = cmdletContext.Select(response, this); output = new CmdletOutput { PipelineOutput = pipelineOutput, ServiceResponse = response }; } catch (Exception e) { output = new CmdletOutput { ErrorResponse = e }; } return(output); }
/// <summary> /// Initiates the asynchronous execution of the DeleteMLModel operation. /// </summary> /// /// <param name="request">Container for the necessary parameters to execute the DeleteMLModel operation.</param> /// <param name="cancellationToken"> /// A cancellation token that can be used by other objects or threads to receive notice of cancellation. /// </param> /// <returns>The task object representing the asynchronous operation.</returns> public Task<DeleteMLModelResponse> DeleteMLModelAsync(DeleteMLModelRequest request, System.Threading.CancellationToken cancellationToken = default(CancellationToken)) { var marshaller = new DeleteMLModelRequestMarshaller(); var unmarshaller = DeleteMLModelResponseUnmarshaller.Instance; return InvokeAsync<DeleteMLModelRequest,DeleteMLModelResponse>(request, marshaller, unmarshaller, cancellationToken); }
/// <summary> /// Assigns the DELETED status to an <code>MLModel</code>, rendering it unusable. /// /// /// <para> /// After using the <code>DeleteMLModel</code> operation, you can use the <a>GetMLModel</a> /// operation to verify that the status of the <code>MLModel</code> changed to DELETED. /// </para> /// <caution><title>Caution</title> /// <para> /// The result of the <code>DeleteMLModel</code> operation is irreversible. /// </para> /// </caution> /// </summary> /// <param name="mlModelId">A user-supplied ID that uniquely identifies the <code>MLModel</code>.</param> /// <param name="cancellationToken"> /// A cancellation token that can be used by other objects or threads to receive notice of cancellation. /// </param> /// /// <returns>The response from the DeleteMLModel service method, as returned by MachineLearning.</returns> /// <exception cref="Amazon.MachineLearning.Model.InternalServerException"> /// An error on the server occurred when trying to process a request. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.InvalidInputException"> /// An error on the client occurred. Typically, the cause is an invalid input value. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.ResourceNotFoundException"> /// A specified resource cannot be located. /// </exception> public Task<DeleteMLModelResponse> DeleteMLModelAsync(string mlModelId, System.Threading.CancellationToken cancellationToken = default(CancellationToken)) { var request = new DeleteMLModelRequest(); request.MLModelId = mlModelId; return DeleteMLModelAsync(request, cancellationToken); }
internal DeleteMLModelResponse DeleteMLModel(DeleteMLModelRequest request) { var marshaller = new DeleteMLModelRequestMarshaller(); var unmarshaller = DeleteMLModelResponseUnmarshaller.Instance; return Invoke<DeleteMLModelRequest,DeleteMLModelResponse>(request, marshaller, unmarshaller); }
/// <summary> /// Assigns the <code>DELETED</code> status to an <code>MLModel</code>, rendering it unusable. /// /// /// <para> /// After using the <code>DeleteMLModel</code> operation, you can use the <code>GetMLModel</code> /// operation to verify that the status of the <code>MLModel</code> changed to DELETED. /// </para> /// /// <para> /// <b>Caution:</b> The result of the <code>DeleteMLModel</code> operation is irreversible. /// </para> /// </summary> /// <param name="mlModelId">A user-supplied ID that uniquely identifies the <code>MLModel</code>.</param> /// /// <returns>The response from the DeleteMLModel service method, as returned by MachineLearning.</returns> /// <exception cref="Amazon.MachineLearning.Model.InternalServerException"> /// An error on the server occurred when trying to process a request. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.InvalidInputException"> /// An error on the client occurred. Typically, the cause is an invalid input value. /// </exception> /// <exception cref="Amazon.MachineLearning.Model.ResourceNotFoundException"> /// A specified resource cannot be located. /// </exception> public DeleteMLModelResponse DeleteMLModel(string mlModelId) { var request = new DeleteMLModelRequest(); request.MLModelId = mlModelId; return DeleteMLModel(request); }
/// <summary> /// Initiates the asynchronous execution of the DeleteMLModel operation. /// </summary> /// /// <param name="request">Container for the necessary parameters to execute the DeleteMLModel operation on AmazonMachineLearningClient.</param> /// <param name="callback">An AsyncCallback delegate that is invoked when the operation completes.</param> /// <param name="state">A user-defined state object that is passed to the callback procedure. Retrieve this object from within the callback /// procedure using the AsyncState property.</param> /// /// <returns>An IAsyncResult that can be used to poll or wait for results, or both; this value is also needed when invoking EndDeleteMLModel /// operation.</returns> public IAsyncResult BeginDeleteMLModel(DeleteMLModelRequest request, AsyncCallback callback, object state) { var marshaller = new DeleteMLModelRequestMarshaller(); var unmarshaller = DeleteMLModelResponseUnmarshaller.Instance; return BeginInvoke<DeleteMLModelRequest>(request, marshaller, unmarshaller, callback, state); }
private Amazon.MachineLearning.Model.DeleteMLModelResponse CallAWSServiceOperation(IAmazonMachineLearning client, Amazon.MachineLearning.Model.DeleteMLModelRequest request) { Utils.Common.WriteVerboseEndpointMessage(this, client.Config, "Amazon Machine Learning", "DeleteMLModel"); try { #if DESKTOP return(client.DeleteMLModel(request)); #elif CORECLR return(client.DeleteMLModelAsync(request).GetAwaiter().GetResult()); #else #error "Unknown build edition" #endif } catch (AmazonServiceException exc) { var webException = exc.InnerException as System.Net.WebException; if (webException != null) { throw new Exception(Utils.Common.FormatNameResolutionFailureMessage(client.Config, webException.Message), webException); } throw; } }