示例#1
0
 /// <summary>
 ///   Raises the <see cref="E:GenerativeClassModelLearningStarted"/> event.
 /// </summary>
 ///
 /// <param name="args">The <see cref="Accord.Statistics.Models.Markov.Learning.GenerativeLearningEventArgs"/> instance containing the event data.</param>
 ///
 protected void OnGenerativeClassModelLearningStarted(GenerativeLearningEventArgs args)
 {
     if (ClassModelLearningStarted != null)
     {
         ClassModelLearningStarted(this, args);
     }
 }
示例#2
0
        private void LearnInner(TObservation[][] x, int[] y, int i, int classes, double[] logLikelihood, int[] classCounts)
        {
            // We will start the class model learning problem
            Trace.WriteLine(String.Format("Starting: {0}", i));
            var args = new GenerativeLearningEventArgs(i, classes);
            OnGenerativeClassModelLearningStarted(args);

            // Select the input/output set corresponding
            //  to the model's specialization class
            int[] idx = y.Find(y_j => y_j == i);
            TObservation[][] observations = x.Get(idx);

            classCounts[i] = observations.Length;

            if (observations.Length > 0)
            {
                // Create and configure the learning algorithm
                var innerModelTeacher = Learner(i);
                var innerModel = innerModelTeacher.Learn(observations);
                Classifier.Models[i] = innerModel;
                logLikelihood[i] = innerModel.LogLikelihood(observations).Sum();
            }

            // Update and report progress
            Trace.WriteLine(String.Format("Done: {0} ", i));
            OnGenerativeClassModelLearningFinished(args);
        }
示例#3
0
        /// <summary>
        ///   Trains each model to recognize each of the output labels.
        /// </summary>
        /// <returns>The sum log-likelihood for all models after training.</returns>
        /// 
        protected double Run<T>(T[] inputs, int[] outputs)
        {
            if (inputs == null) throw new ArgumentNullException("inputs");
            if (outputs == null) throw new ArgumentNullException("outputs");

            if (inputs.Length != outputs.Length)
                throw new DimensionMismatchException("outputs", 
                    "The number of inputs and outputs does not match.");

            for (int i = 0; i < outputs.Length; i++)
                if (outputs[i] < 0 || outputs[i] >= Classifier.Classes)
                    throw new ArgumentOutOfRangeException("outputs");


            int classes = Classifier.Classes;
            double[] logLikelihood = new double[classes];
            int[] classCounts = new int[classes];


            // For each model,
#if !DEBUG
            Parallel.For(0, classes, i =>
#else
            for (int i = 0; i < classes; i++)
#endif
            {
                // We will start the class model learning problem
                var args = new GenerativeLearningEventArgs(i, classes);
                OnGenerativeClassModelLearningStarted(args);

                // Select the input/output set corresponding
                //  to the model's specialization class
                int[] inx = outputs.Find(y => y == i);
                T[] observations = inputs.Submatrix(inx);

                classCounts[i] = observations.Length;

                if (observations.Length > 0)
                {
                    // Create and configure the learning algorithm
                    IUnsupervisedLearning teacher = Algorithm(i);

                    // Train the current model in the input/output subset
                    logLikelihood[i] = teacher.Run(observations as Array[]);
                }

                // Update and report progress
                OnGenerativeClassModelLearningFinished(args);
            }
示例#4
0
        /// <summary>
        /// Learns a model that can map the given inputs to the given outputs.
        /// </summary>
        /// <param name="x">The model inputs.</param>
        /// <param name="y">The desired outputs associated with each <paramref name="x">inputs</paramref>.</param>
        /// <param name="weights">The weight of importance for each input-output pair.</param>
        /// <returns>
        /// A model that has learned how to produce <paramref name="y" /> given <paramref name="x" />.
        /// </returns>
        public TClassifier Learn(TObservation[][] x, int[] y, double[] weights = null)
        {
            if (x.Length != y.Length)
            {
                throw new DimensionMismatchException("outputs",
                                                     "The number of inputs and outputs does not match.");
            }

            for (int i = 0; i < y.Length; i++)
            {
                if (y[i] < 0 || y[i] >= Classifier.Classes)
                {
                    throw new ArgumentOutOfRangeException("outputs");
                }
            }


            int classes = Classifier.Classes;

            double[] logLikelihood = new double[classes];
            int[]    classCounts   = new int[classes];


            // For each model,
            Parallel.For(0, classes, i =>
            {
                // We will start the class model learning problem
                var args = new GenerativeLearningEventArgs(i, classes);
                OnGenerativeClassModelLearningStarted(args);

                // Select the input/output set corresponding
                //  to the model's specialization class
                int[] inx = y.Find(y_j => y_j == i);
                TObservation[][] observations = x.Get(inx);

                classCounts[i] = observations.Length;

                if (observations.Length > 0)
                {
                    // Create and configure the learning algorithm
                    var teacher      = Learner(i);
                    var model        = teacher.Learn(observations);
                    logLikelihood[i] = model.LogLikelihood(observations).Sum();
                }

                // Update and report progress
                OnGenerativeClassModelLearningFinished(args);
            });

            if (Empirical)
            {
                for (int i = 0; i < classes; i++)
                {
                    Classifier.Priors[i] = (double)classCounts[i] / x.Length;
                }
            }

            if (Rejection)
            {
                Classifier.Threshold = Threshold();
            }

            LogLikelihood = logLikelihood.Sum();

            return(Classifier);
        }
示例#5
0
        protected double Run <T>(T[] inputs, int[] outputs)
        {
            if (inputs == null)
            {
                throw new ArgumentNullException("inputs");
            }

            if (outputs == null)
            {
                throw new ArgumentNullException("outputs");
            }

            if (inputs.Length != outputs.Length)
            {
                throw new DimensionMismatchException("outputs",
                                                     "The number of inputs and outputs does not match.");
            }

            for (int i = 0; i < outputs.Length; i++)
            {
                if (outputs[i] < 0 || outputs[i] >= Classifier.Classes)
                {
                    throw new ArgumentOutOfRangeException("outputs");
                }
            }


            int classes = Classifier.Classes;

            double[] logLikelihood = new double[classes];
            int[]    classCounts   = new int[classes];


            // For each model,
            Parallel.For(0, classes, i =>
            {
                // We will start the class model learning problem
                var args = new GenerativeLearningEventArgs(i, classes);
                OnGenerativeClassModelLearningStarted(args);

                // Select the input/output set corresponding
                //  to the model's specialization class
                int[] inx        = outputs.Find(y => y == i);
                T[] observations = inputs.Get(inx);

                classCounts[i] = observations.Length;

                if (observations.Length > 0)
                {
                    // Create and configure the learning algorithm
                    // Backward compatibility case
                    var teacher = Algorithm(i);

                    // Train the current model in the input/output subset
                    logLikelihood[i] = teacher.Run(observations as Array[]);
                }

                // Update and report progress
                OnGenerativeClassModelLearningFinished(args);
            });

            if (Empirical)
            {
                for (int i = 0; i < classes; i++)
                {
                    Classifier.Priors[i] = (double)classCounts[i] / inputs.Length;
                }
            }

            if (Rejection)
            {
                Classifier.Threshold = Threshold();
            }

            // Returns the sum log-likelihood for all models.
            return(logLikelihood.Sum());
        }