public void NaiveBayesConstructorTest4()
        {
            int classes = 2;
            int inputCount = 3;
            double[] priors = { 0.4, 0.6 };
            UniformDiscreteDistribution initial = new UniformDiscreteDistribution(0, 3);

            var target = new NaiveBayes<UniformDiscreteDistribution>(classes, inputCount, initial, priors);

            Assert.AreEqual(classes, target.ClassCount);
            Assert.AreEqual(inputCount, target.InputCount);
            Assert.AreEqual(priors.Length, target.Priors.Length);
            Assert.AreEqual(0.4, target.Priors[0]);
            Assert.AreEqual(0.6, target.Priors[1]);

            Assert.AreEqual(2, target.Distributions.GetLength(0));
            Assert.AreEqual(3, target.Distributions.GetLength(1));

            for (int i = 0; i < classes; i++)
            {
                for (int j = 0; j < inputCount; j++)
                {
                    Assert.AreNotSame(initial, target.Distributions[i, j]);
                    Assert.AreEqual(0, target.Distributions[i, j].Minimum);
                    Assert.AreEqual(3, target.Distributions[i, j].Maximum);
                }
            }
        }
        public void ConstructorTest()
        {
            // Create an uniform (discrete) distribution in [2, 6] 
            var dist = new UniformDiscreteDistribution(a: 2, b: 6);

            // Common measures
            double mean = dist.Mean;     // 4.0
            double median = dist.Median; // 4.0
            double var = dist.Variance;  // 1.3333333333333333

            // Cumulative distribution functions
            double cdf = dist.DistributionFunction(k: 2);               // 0.2
            double ccdf = dist.ComplementaryDistributionFunction(k: 2); // 0.8

            // Probability mass functions
            double pmf1 = dist.ProbabilityMassFunction(k: 4); // 0.2
            double pmf2 = dist.ProbabilityMassFunction(k: 5); // 0.2
            double pmf3 = dist.ProbabilityMassFunction(k: 6); // 0.2
            double lpmf = dist.LogProbabilityMassFunction(k: 2); // -1.6094379124341003

            // Quantile function
            int icdf1 = dist.InverseDistributionFunction(p: 0.17); // 2
            int icdf2 = dist.InverseDistributionFunction(p: 0.46); // 4
            int icdf3 = dist.InverseDistributionFunction(p: 0.87); // 6

            // Hazard (failure rate) functions
            double hf = dist.HazardFunction(x: 4); // 0.5
            double chf = dist.CumulativeHazardFunction(x: 4); // 0.916290731874155

            // String representation
            string str = dist.ToString(CultureInfo.InvariantCulture); // "U(x; a = 2, b = 6)"

            Assert.AreEqual(4.0, mean);
            Assert.AreEqual(4.0, median);
            Assert.AreEqual(1.3333333333333333, var);
            Assert.AreEqual(0.916290731874155, chf, 1e-10);
            Assert.AreEqual(0.2, cdf);
            Assert.AreEqual(0.2, pmf1);
            Assert.AreEqual(0.2, pmf2);
            Assert.AreEqual(0.2, pmf3);
            Assert.AreEqual(-1.6094379124341003, lpmf);
            Assert.AreEqual(0.5, hf);
            Assert.AreEqual(0.8, ccdf);
            Assert.AreEqual(2, icdf1);
            Assert.AreEqual(4, icdf2);
            Assert.AreEqual(6, icdf3);
            Assert.AreEqual("U(x; a = 2, b = 6)", str);

            var range1 = dist.GetRange(0.95);
            var range2 = dist.GetRange(0.99);
            var range3 = dist.GetRange(0.01);

            Assert.AreEqual(2, range1.Min);
            Assert.AreEqual(6, range1.Max);
            Assert.AreEqual(2.0, range2.Min);
            Assert.AreEqual(6, range2.Max);
            Assert.AreEqual(2.0, range3.Min);
            Assert.AreEqual(6, range3.Max);
        }
        public void GetRangeTest()
        {
            var u = new UniformDiscreteDistribution(-8, 7);

            var range = u.GetRange(0.99);

            Assert.AreEqual(-8, range.Min);
            Assert.AreEqual(7, range.Max);
        }
        public void IntervalTest()
        {
            var target = new UniformDiscreteDistribution(-10, 10);

            for (int k = -15; k < 15; k++)
            {
                double expected = target.ProbabilityMassFunction(k);

                double a = target.DistributionFunction(k);
                double b = target.DistributionFunction(k - 1);
                double c = a - b;

                Assert.AreEqual(expected, c, 1e-15);
                Assert.AreEqual(c, target.DistributionFunction(k - 1, k), 1e-15);
            }
        }
        public void PosteriorTest1()
        {
            // Example from http://ai.stanford.edu/~serafim/CS262_2007/notes/lecture5.pdf
       

            double[,] A = 
            {
                { 0.95, 0.05 }, // fair dice state
                { 0.05, 0.95 }, // loaded dice state
            };

            double[,] B = 
            {
                { 1 /  6.0, 1 /  6.0, 1 /  6.0, 1 /  6.0, 1 /  6.0, 1 / 6.0 }, // fair dice probabilities
                { 1 / 10.0, 1 / 10.0, 1 / 10.0, 1 / 10.0, 1 / 10.0, 1 / 2.0 }, // loaded probabilities
            };

            double[] pi = { 0.5, 0.5 };

            var hmm = HiddenMarkovModel.CreateGeneric(A, B, pi);

            int[] x = new int[] { 1, 2, 1, 5, 6, 2, 1, 5, 2, 4 }.Subtract(1);
            int[] y = new int[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
            double py = Math.Exp(hmm.Evaluate(x, y));

            Assert.AreEqual(0.00000000521158647211, py, 1e-16);

            x = new int[] { 1, 2, 1, 5, 6, 2, 1, 5, 2, 4 }.Subtract(1);
            y = new int[] { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
            py = Math.Exp(hmm.Evaluate(x, y));

            Assert.AreEqual(0.00000000015756235243, py, 1e-16);


            Accord.Math.Tools.SetupGenerator(0);
            var u = new UniformDiscreteDistribution(0, 6);

            int[] sequence = u.Generate(1000);
            int start = 120;
            int end = 150;
            for (int i = start; i < end; i += 2)
                sequence[i] = 5;


            // Predict the next observation in sequence
            int[] path;
            double[][] p = hmm.Posterior(sequence, out path);

            for (int i = 0; i < path.Length; i++)
                Assert.AreEqual(1, p[i][0] + p[i][1], 1e-10);


            int loaded = 0;
            for (int i = 0; i < start; i++)
                if (p[i][1] > 0.95)
                    loaded++;

            Assert.AreEqual(0, loaded);

            loaded = 0;
            for (int i = start; i < end; i++)
                if (p[i][1] > 0.95)
                    loaded++;

            Assert.IsTrue(loaded > 15);

            loaded = 0;
            for (int i = end; i < p.Length; i++)
                if (p[i][1] > 0.95)
                    loaded++;

            Assert.AreEqual(0, loaded);
        }