public void RunTest()
        {
            // Example regression problem. Suppose we are trying
            // to model the following equation: f(x, y) = 2x + y

            double[][] inputs = // (x, y)
            {
                new double[] { 0,  1 }, // 2*0 + 1 =  1
                new double[] { 4,  3 }, // 2*4 + 3 = 11
                new double[] { 8, -8 }, // 2*8 - 8 =  8
                new double[] { 2,  2 }, // 2*2 + 2 =  6
                new double[] { 6,  1 }, // 2*6 + 1 = 13
                new double[] { 5,  4 }, // 2*5 + 4 = 14
                new double[] { 9,  1 }, // 2*9 + 1 = 19
                new double[] { 1,  6 }, // 2*1 + 6 =  8
            };

            double[] outputs = // f(x, y)
            {
                    1, 11, 8, 6, 13, 14, 19, 8
            };

            // Create a new linear Support Vector Machine 
            var machine = new SupportVectorMachine(inputs: 2);

            // Create the linear regression coordinate descent teacher
            var learn = new LinearRegressionNewtonMethod(machine, inputs, outputs)
            {
                Complexity = 100000000,
                Epsilon = 1e-15,
                Tolerance = 1e-15,
            };

            // Run the learning algorithm
            double error = learn.Run();
            Assert.AreEqual(860.0, error);

            // Compute the answer for one particular example
            double fxy = machine.Compute(inputs[0]); // 1.0003849827673186

            // Check for correct answers
            double[] answers = new double[inputs.Length];
            for (int i = 0; i < answers.Length; i++)
                answers[i] = machine.Compute(inputs[i]);

            Assert.AreEqual(1.0, fxy, 1e-5);
            for (int i = 0; i < outputs.Length; i++)
                Assert.AreEqual(outputs[i], answers[i], 1e-5);
        }
示例#2
0
文件: SVM.cs 项目: abaffa/INF1771
        public void Run()
        {
            // Example AND problem
            double[][] inputs =
            {
            new double[] { 0, 0 }, // 0 and 0: 0 (label -1)
            new double[] { 0, 1 }, // 0 and 1: 0 (label -1)
            new double[] { 1, 0 }, // 1 and 0: 0 (label -1)
            new double[] { 1, 1 }  // 1 and 1: 1 (label +1)
            };

            // Dichotomy SVM outputs should be given as [-1;+1]
            int[] labels =
            {
            // 0,  0,  0, 1
              -1, -1, -1, 1
            };

            // Create a Support Vector Machine for the given inputs
            SupportVectorMachine machine = new SupportVectorMachine(inputs[0].Length);

            // Instantiate a new learning algorithm for SVMs
            SequentialMinimalOptimization smo = new SequentialMinimalOptimization(machine, inputs, labels);

            // Set up the learning algorithm
            smo.Complexity = 1.0;

            // Run the learning algorithm
            double error = smo.Run();

            // Compute the decision output for one of the input vectors
            int decision = System.Math.Sign(machine.Compute(inputs[0]));
        }
示例#3
0
        private static void and()
        {
            // Create a simple binary AND
            // classification problem:

            double[][] problem =
            {
                //             a    b    a + b
                new double[] { 0,   0,     0    },
                new double[] { 0,   1,     0    },
                new double[] { 1,   0,     0    },
                new double[] { 1,   1,     1    },
            };

            // Get the two first columns as the problem
            // inputs and the last column as the output
            
            // input columns
            double[][] inputs = problem.GetColumns(0, 1);

            // output column
            int[] outputs = problem.GetColumn(2).ToInt32();

            // Plot the problem on screen
            ScatterplotBox.Show("AND", inputs, outputs).Hold();


            // However, SVMs expect the output value to be
            // either -1 or +1. As such, we have to convert
            // it so the vector contains { -1, -1, -1, +1 }:
            //
            outputs = outputs.Apply(x => x == 0 ? -1 : 1);


            // Create a new linear-SVM for two inputs (a and b)
            SupportVectorMachine svm = new SupportVectorMachine(inputs: 2);

            // Create a L2-regularized L2-loss support vector classification
            var teacher = new LinearDualCoordinateDescent(svm, inputs, outputs)
            {
                Loss = Loss.L2,
                Complexity = 1000,
                Tolerance = 1e-5
            };

            // Learn the machine
            double error = teacher.Run(computeError: true);

            // Compute the machine's answers for the learned inputs
            int[] answers = inputs.Apply(x => Math.Sign(svm.Compute(x)));

            // Plot the results
            ScatterplotBox.Show("SVM's answer", inputs, answers).Hold();
        }
        public void LearnTest()
        {

            double[][] inputs =
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            int[] xor =
            {
                -1,
                 1,
                 1,
                -1
            };

            var kernel = new Polynomial(2, 0.0);

            double[][] augmented = new double[inputs.Length][];
            for (int i = 0; i < inputs.Length; i++)
                augmented[i] = kernel.Transform(inputs[i]);

            SupportVectorMachine machine = new SupportVectorMachine(augmented[0].Length);

            // Create the Least Squares Support Vector Machine teacher
            var learn = new LinearDualCoordinateDescent(machine, augmented, xor);

            // Run the learning algorithm
            double error = learn.Run();

            Assert.AreEqual(0, error);

            int[] output = augmented.Apply(p => Math.Sign(machine.Compute(p)));
            for (int i = 0; i < output.Length; i++)
                Assert.AreEqual(System.Math.Sign(xor[i]), System.Math.Sign(output[i]));
        }
        public void ComputeTest5()
        {
            var dataset = SequentialMinimalOptimizationTest.yinyang;

            double[][] inputs = dataset.Submatrix(null, 0, 1).ToArray();
            int[] labels = dataset.GetColumn(2).ToInt32();

            var kernel = new Polynomial(2, 1);

            Accord.Math.Tools.SetupGenerator(0);
            var projection = inputs.Apply(kernel.Transform);
            var machine = new SupportVectorMachine(projection[0].Length);
            var smo = new LinearCoordinateDescent(machine, projection, labels)
            {
                Complexity = 1000000,
                Tolerance = 1e-15
            };

            double error = smo.Run();

            Assert.AreEqual(1000000.0, smo.Complexity, 1e-15);

            int[] actual = new int[labels.Length];
            for (int i = 0; i < actual.Length; i++)
                actual[i] = Math.Sign(machine.Compute(projection[i]));

            ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);
            Assert.AreEqual(6, matrix.FalseNegatives);
            Assert.AreEqual(7, matrix.FalsePositives);
            Assert.AreEqual(44, matrix.TruePositives);
            Assert.AreEqual(43, matrix.TrueNegatives);
        }
        public void LearnTest5()
        {

            double[][] inputs =
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            int[] positives =
            {
                1,
                1,
                1,
                1
            };

            // Create Kernel Support Vector Machine with a Polynomial Kernel of 2nd degree
            SupportVectorMachine machine = new SupportVectorMachine(inputs[0].Length);

            // Create the sequential minimal optimization teacher
            SequentialMinimalOptimization learn = new SequentialMinimalOptimization(machine, inputs, positives);
            learn.Complexity = 1;

            // Run the learning algorithm
            double error = learn.Run();

            Assert.AreEqual(0, error);


            int[] output = inputs.Apply(p => (int)machine.Compute(p));

            for (int i = 0; i < output.Length; i++)
            {
                bool sor = positives[i] >= 0;
                bool sou = output[i] >= 0;
                Assert.AreEqual(sor, sou);
            }
        }
        public void TrainTest2()
        {

            double[][] inputs =
            {
                new double[] { -1, -1 },
                new double[] { -1,  1 },
                new double[] {  1, -1 },
                new double[] {  1,  1 }
            };

            int[] or =
            {
                -1,
                -1,
                -1,
                +1
            };

            // Create Kernel Support Vector Machine with a Polynomial Kernel of 2nd degree
            SupportVectorMachine machine = new SupportVectorMachine(inputs[0].Length);

            // Create the sequential minimal optimization teacher
            SequentialMinimalOptimization learn = new SequentialMinimalOptimization(machine, inputs, or);
            learn.Complexity = 1;

            // Run the learning algorithm
            learn.Run();


            double[] output = machine.Compute(inputs);

            for (int i = 0; i < output.Length; i++)
            {
                bool sor = or[i] >= 0;
                bool sou = output[i] >= 0;
                Assert.AreEqual(sor, sou);
            }


        }
        public void TransformTest()
        {
            var inputs = yinyang.Submatrix(null, 0, 1).ToArray();
            var labels = yinyang.GetColumn(2).ToInt32();
            
            ConfusionMatrix actual, expected;
            SequentialMinimalOptimization a, b;

            var kernel = new Polynomial(2, 0);

            {
                var machine = new KernelSupportVectorMachine(kernel, inputs[0].Length);
                a = new SequentialMinimalOptimization(machine, inputs, labels);
                a.UseComplexityHeuristic = true;
                a.Run();

                int[] values = new int[labels.Length];
                for (int i = 0; i < values.Length; i++)
                    values[i] = Math.Sign(machine.Compute(inputs[i]));

                expected = new ConfusionMatrix(values, labels);
            }

            {
                var projection = inputs.Apply(kernel.Transform);
                var machine = new SupportVectorMachine(projection[0].Length);
                b = new SequentialMinimalOptimization(machine, projection, labels);
                b.UseComplexityHeuristic = true;
                b.Run();

                int[] values = new int[labels.Length];
                for (int i = 0; i < values.Length; i++)
                    values[i] = Math.Sign(machine.Compute(projection[i]));

                actual = new ConfusionMatrix(values, labels);
            }

            Assert.AreEqual(a.Complexity, b.Complexity, 1e-15);
            Assert.AreEqual(expected.TrueNegatives, actual.TrueNegatives);
            Assert.AreEqual(expected.TruePositives, actual.TruePositives);
            Assert.AreEqual(expected.FalseNegatives, actual.FalseNegatives);
            Assert.AreEqual(expected.FalsePositives, actual.FalsePositives);
        }
        public void ComputeTest5()
        {
            var dataset = SequentialMinimalOptimizationTest.yinyang;
            var inputs = dataset.Submatrix(null, 0, 1).ToArray();
            var labels = dataset.GetColumn(2).ToInt32();

            var kernel = new Polynomial(2, 0);

            {
                var machine = new KernelSupportVectorMachine(kernel, inputs[0].Length);
                var smo = new SequentialMinimalOptimization(machine, inputs, labels);
                smo.UseComplexityHeuristic = true;

                double error = smo.Run();
                Assert.AreEqual(0.2, error);

                Assert.AreEqual(0.11714451552090824, smo.Complexity);

                int[] actual = new int[labels.Length];
                for (int i = 0; i < actual.Length; i++)
                    actual[i] = Math.Sign(machine.Compute(inputs[i]));

                ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);
                Assert.AreEqual(20, matrix.FalseNegatives);
                Assert.AreEqual(0, matrix.FalsePositives);
                Assert.AreEqual(30, matrix.TruePositives);
                Assert.AreEqual(50, matrix.TrueNegatives);
            }

            {
                Accord.Math.Tools.SetupGenerator(0);

                var projection = inputs.Apply(kernel.Transform);
                var machine = new SupportVectorMachine(projection[0].Length);
                var smo = new LinearNewtonMethod(machine, projection, labels);
                smo.UseComplexityHeuristic = true;

                double error = smo.Run();
                Assert.AreEqual(0.18, error);

                Assert.AreEqual(0.11714451552090821, smo.Complexity, 1e-15);

                int[] actual = new int[labels.Length];
                for (int i = 0; i < actual.Length; i++)
                    actual[i] = Math.Sign(machine.Compute(projection[i]));

                ConfusionMatrix matrix = new ConfusionMatrix(actual, labels);
                Assert.AreEqual(17, matrix.FalseNegatives);
                Assert.AreEqual(1, matrix.FalsePositives);
                Assert.AreEqual(33, matrix.TruePositives);
                Assert.AreEqual(49, matrix.TrueNegatives);
            }

        }
        public void ReceiverOperatingCharacteristicConstructorTest3()
        {
            // This example shows how to measure the accuracy of a 
            // binary classifier using a ROC curve. For this example,
            // we will be creating a Support Vector Machine trained
            // on the following instances:

            double[][] inputs =
            {
                // Those are from class -1
                new double[] { 2, 4, 0 },
                new double[] { 5, 5, 1 },
                new double[] { 4, 5, 0 },
                new double[] { 2, 5, 5 },
                new double[] { 4, 5, 1 },
                new double[] { 4, 5, 0 },
                new double[] { 6, 2, 0 },
                new double[] { 4, 1, 0 },

                // Those are from class +1
                new double[] { 1, 4, 5 },
                new double[] { 7, 5, 1 },
                new double[] { 2, 6, 0 },
                new double[] { 7, 4, 7 },
                new double[] { 4, 5, 0 },
                new double[] { 6, 2, 9 },
                new double[] { 4, 1, 6 },
                new double[] { 7, 2, 9 },
            };

            int[] outputs =
            {
                -1, -1, -1, -1, -1, -1, -1, -1, // fist eight from class -1
                +1, +1, +1, +1, +1, +1, +1, +1  // last eight from class +1
            };

            // Create a linear Support Vector Machine with 4 inputs
            SupportVectorMachine machine = new SupportVectorMachine(inputs: 3);

            // Create the sequential minimal optimization teacher
            SequentialMinimalOptimization learn = new SequentialMinimalOptimization(machine, inputs, outputs);

            // Run the learning algorithm
            double error = learn.Run();

            // Extract the input labels predicted by the machine
            double[] predicted = new double[inputs.Length];
            for (int i = 0; i < predicted.Length; i++)
                predicted[i] = machine.Compute(inputs[i]);


            // Create a new ROC curve to assess the performance of the model
            var roc = new ReceiverOperatingCharacteristic(outputs, predicted);

            roc.Compute(100); // Compute a ROC curve with 100 points
            /*
                        // Generate a connected scatter plot for the ROC curve and show it on-screen
                        ScatterplotBox.Show(roc.GetScatterplot(includeRandom: true), nonBlocking: true)

                            .SetSymbolSize(0)      // do not display data points
                            .SetLinesVisible(true) // show lines connecting points
                            .SetScaleTight(true)   // tighten the scale to points
                            .WaitForClose();
            */

            Assert.AreEqual(0.7890625, roc.Area);
            // Assert.AreEqual(0.1174774, roc.StandardError, 1e-6); HanleyMcNeil
            Assert.AreEqual(0.11958120746409709, roc.StandardError, 1e-6);
        }
示例#11
0
        private static void xor()
        {
            // Create a simple binary XOR
            // classification problem:

            double[][] problem =
            {
                //             a    b    a XOR b
                new double[] { 0,   0,      0    },
                new double[] { 0,   1,      1    },
                new double[] { 1,   0,      1    },
                new double[] { 1,   1,      0    },
            };

            // Get the two first columns as the problem
            // inputs and the last column as the output

            // input columns
            double[][] inputs = problem.GetColumns(0, 1);

            // output column
            int[] outputs = problem.GetColumn(2).ToInt32();

            // Plot the problem on screen
            ScatterplotBox.Show("XOR", inputs, outputs).Hold();


            // However, SVMs expect the output value to be
            // either -1 or +1. As such, we have to convert
            // it so the vector contains { -1, -1, -1, +1 }:
            //
            outputs = outputs.Apply(x => x == 0 ? -1 : 1);


            // Create a new linear-SVM for two inputs (a and b)
            SupportVectorMachine svm = new SupportVectorMachine(inputs: 2);

            // Create a L2-regularized L2-loss support vector classification
            var teacher = new LinearDualCoordinateDescent(svm, inputs, outputs)
            {
                Loss = Loss.L2,
                Complexity = 1000,
                Tolerance = 1e-5
            };

            // Learn the machine
            double error = teacher.Run(computeError: true);

            // Compute the machine's answers for the learned inputs
            int[] answers = inputs.Apply(x => Math.Sign(svm.Compute(x)));

            // Plot the results
            ScatterplotBox.Show("SVM's answer", inputs, answers).Hold();

            // Use an explicit kernel expansion to transform the 
            // non-linear classification problem into a linear one
            //
            // Create a quadratic kernel
            Quadratic quadratic = new Quadratic(constant: 1);
            
            // Project the inptus into a higher dimensionality space
            double[][] expansion = inputs.Apply(quadratic.Transform);


            
            // Create a new linear-SVM for the transformed input space
            svm = new SupportVectorMachine(inputs: expansion[0].Length);

            // Create the same learning algorithm in the expanded input space
            teacher = new LinearDualCoordinateDescent(svm, expansion, outputs)
            {
                Loss = Loss.L2,
                Complexity = 1000,
                Tolerance = 1e-5
            };

            // Learn the machine
            error = teacher.Run(computeError: true); 

            // Compute the machine's answers for the learned inputs
            answers = expansion.Apply(x => Math.Sign(svm.Compute(x)));

            // Plot the results
            ScatterplotBox.Show("SVM's answer", inputs, answers).Hold();
        }
示例#12
0
        private static void cancer()
        {
            // Create a new LibSVM sparse format data reader
            // to read the Wisconsin's Breast Cancer dataset
            //
            var reader = new SparseReader("examples-sparse.txt");

            int[] outputs; // Read the classification problem into dense memory
            double[][] inputs = reader.ReadToEnd(sparse: false, labels: out outputs);

            // The dataset has output labels as 4 and 2. We have to convert them
            // into negative and positive labels so they can be properly processed.
            //
            outputs = outputs.Apply(x => x == 2 ? -1 : +1);

            // Create a new linear-SVM for the problem dimensions
            var svm = new SupportVectorMachine(inputs: reader.Dimensions);

            // Create a learning algorithm for the problem's dimensions
            var teacher = new LinearDualCoordinateDescent(svm, inputs, outputs)
            {
                Loss = Loss.L2,
                Complexity = 1000,
                Tolerance = 1e-5
            };

            // Learn the classification
            double error = teacher.Run();

            // Compute the machine's answers for the learned inputs
            int[] answers = inputs.Apply(x => Math.Sign(svm.Compute(x)));

            // Create a confusion matrix to show the machine's performance
            var m = new ConfusionMatrix(predicted: answers, expected: outputs);

            // Show it onscreen
            DataGridBox.Show(new ConfusionMatrixView(m));
        }