public void testFeedForwardAndBAckLoopWorks() { // example 11.14 of Neural Network Design by Hagan, Demuth and Beale Matrix hiddenLayerWeightMatrix = new Matrix(2, 1); hiddenLayerWeightMatrix.set(0, 0, -0.27); hiddenLayerWeightMatrix.set(1, 0, -0.41); Vector hiddenLayerBiasVector = new Vector(2); hiddenLayerBiasVector.setValue(0, -0.48); hiddenLayerBiasVector.setValue(1, -0.13); Vector input = new Vector(1); input.setValue(0, 1); Matrix outputLayerWeightMatrix = new Matrix(1, 2); outputLayerWeightMatrix.set(0, 0, 0.09); outputLayerWeightMatrix.set(0, 1, -0.17); Vector outputLayerBiasVector = new Vector(1); outputLayerBiasVector.setValue(0, 0.48); Vector error = new Vector(1); error.setValue(0, 1.261); double learningRate = 0.1; double momentumFactor = 0.0; FeedForwardNeuralNetwork ffnn = new FeedForwardNeuralNetwork( hiddenLayerWeightMatrix, hiddenLayerBiasVector, outputLayerWeightMatrix, outputLayerBiasVector); ffnn.setTrainingScheme(new BackPropLearning(learningRate, momentumFactor)); ffnn.processInput(input); ffnn.processError(error); Matrix finalHiddenLayerWeights = ffnn.getHiddenLayerWeights(); Assert.AreEqual(-0.265, finalHiddenLayerWeights.get(0, 0), 0.001); Assert.AreEqual(-0.419, finalHiddenLayerWeights.get(1, 0), 0.001); Vector hiddenLayerBias = ffnn.getHiddenLayerBias(); Assert.AreEqual(-0.475, hiddenLayerBias.getValue(0), 0.001); Assert.AreEqual(-0.1399, hiddenLayerBias.getValue(1), 0.001); Matrix finalOutputLayerWeights = ffnn.getOutputLayerWeights(); Assert.AreEqual(0.171, finalOutputLayerWeights.get(0, 0), 0.001); Assert.AreEqual(-0.0772, finalOutputLayerWeights.get(0, 1), 0.001); Vector outputLayerBias = ffnn.getOutputLayerBias(); Assert.AreEqual(0.7322, outputLayerBias.getValue(0), 0.001); }