public SOMColors() { InitializeComponent(); network = CreateNetwork(); gaussian = new NeighborhoodRBF(RBFEnum.Gaussian, WIDTH, HEIGHT); train = new BasicTrainSOM(network, 0.01, null, gaussian); train.ForceWinner = false; samples = AIFH.Alloc2D<double>(15, 3); for (int i = 0; i < 15; i++) { samples[i][0] = rnd.NextDouble(-1, 1); samples[i][1] = rnd.NextDouble(-1, 1); samples[i][2] = rnd.NextDouble(-1, 1); } train.SetAutoDecay(100, 0.8, 0.003, 30, 5); }
/// <summary> /// Construct a BestMatchingUnit class. The training class must be provided. /// </summary> /// <param name="som">The SOM to evaluate.</param> public BestMatchingUnit(SelfOrganizingMap som) { _som = som; }
private SelfOrganizingMap CreateNetwork() { var result = new SelfOrganizingMap(3, WIDTH*HEIGHT); result.Reset(); return result; }