private void CalculateErrorOut(double[] outPattern) { BackpropagationLayer outLayer = layers[layers.Count - 1]; for (int x = 0; x < outPattern.Count(); x++) { BackpropagationNeuron neuronOut = outLayer.neurons[x]; //Formula: Erro_saída[j] = (valor_desejado – valor_obtido)* valor_obtido * (1 – (valor_obtido)) neuronOut.valueError = (outPattern[x] - neuronOut.GetValuePattern()) * neuronOut.GetValuePattern() * (1 - neuronOut.GetValuePattern()); } }
private double[] GetDoubleArrayOutput() { BackpropagationLayer outLayer = layers[layers.Count - 1]; double[] result = new double[outLayer.neurons.Count()]; for (int x = 0; x < outLayer.neurons.Count(); x++) { BackpropagationNeuron neuron = outLayer.neurons[x]; result[x] = neuron.GetValuePattern(); } return(result); }
public BackpropagationLayer(int layerSize, BackpropagationLayer fatherLayer) { neurons = new List <BackpropagationNeuron>(); for (int x = 0; x < layerSize; x++) { BackpropagationNeuron neuron = new BackpropagationNeuron(); neurons.Add(neuron); foreach (BackpropagationNeuron fatherNeuron in fatherLayer.neurons) { neuron.listConnection.Add(new BackpropagationConnection(fatherNeuron)); } } }
private void DoBackPropagation(double[] outPattern) { //CALCULA ERRO NA CAMADA DE SAÍDA! CalculateErrorOut(outPattern); //Calcula o erro nas camadas intermediárias //ErrorA = Output A (1 - Output A)(ErrorB WAB + ErrorC WAC) //VEM PROPAGANDO DE TRÁS PARA FRENTE. COMEÇA NA PENÚLTIMA CAMADA E VAI ATÉ A PRIMEIRA for (int x = layers.Count - 2; x >= 0; x--) { BackpropagationLayer layerL = layers[x]; BackpropagationLayer layerR = layers[x + 1]; //PARA CADA NEURÔNIO DA CAMADA DA ESQUERDA for (int y = 0; y < layerL.neurons.Count; y++) { BackpropagationNeuron neuronL = layerL.neurons[y]; neuronL.valueError = 0; //CALCULA O ERRO double sum = 0; for (int z = 0; z < layerR.neurons.Count; z++) { //para cada neurônio da camada da direita, pega ele e encontra a conexão entre os 2 BackpropagationNeuron neuronR = layerR.neurons[z]; for (int c = 0; c < neuronR.listConnection.Count; c++) { BackpropagationConnection connection = neuronR.listConnection[c]; if (connection.neuron == neuronL) { //acumula a soma do (erro do neuronio da direita * peso da ligacao) sum += neuronR.valueError * connection.valueWeight; //e //atualiza peso da conexão //WAB = WAB + (ErrorB x OutputA) connection.valueWeight = connection.valueWeight + (neuronR.valueError * neuronL.valuePattern); } } } //ErrorA = Output A (1 - Output A)(ErrorB WAB + ErrorC WAC) neuronL.valueError = neuronL.valuePattern * (1 - neuronL.valuePattern) * sum; } } }
private void CalculateSum(BackpropagationLayer layer) { for (int x = 0; x < layer.neurons.Count; x++) { BackpropagationNeuron neuron = layer.neurons[x]; //CALCULA A SOMA PARA CADA NEURONIO DA CAMADA. //PARA ISSO, APURA CADA RELAÇÃO DE SUA CONEXAO (BACKWARD). double sum = 0; for (int y = 0; y < neuron.listConnection.Count; y++) { BackpropagationConnection connection = neuron.listConnection[y]; // Formula: (E x*w) sum += (connection.neuron.GetValuePattern() * connection.valueWeight); } //APLICA A FUNÇÃO DE TRANSFERÊNCIA. neuron.SetValuePattern(TransferFunction(sum)); } }
public BackpropagationConnection(BackpropagationNeuron neuron) { this.neuron = neuron; this.valueWeight = (Util.Randomizer.NextDouble(1) - 0.5); //RANDON VALUE BETWEEN [-0.5 AND +0.5] this.deltaWeight = 0; }