示例#1
0
文件: Score.cs 项目: toroerp/numl
        /// <summary>
        /// Scores a set of predictions against the actual values.
        /// </summary>
        /// <param name="predictions">Predicted values.</param>
        /// <param name="actual">Actual values.</param>
        /// <param name="truthLabel">(Optional) the truth label in the <paramref name="actual"/> vector.</param>
        /// <param name="falseLabel">(Optional) the false label in the <paramref name="actual"/> vector.</param>
        /// <returns></returns>
        public static Score ScorePredictions(Vector predictions, Vector actual,
                                             double truthLabel = Ject.DefaultTruthValue, double falseLabel = Ject.DefaultFalseValue)
        {
            var score = new numl.Supervised.Score()
            {
                TotalPositives = actual.Where(w => w == truthLabel).Count(),
                TotalNegatives = actual.Where(w => (w == falseLabel || w != truthLabel)).Count(),

                TruePositives  = actual.Where((i, idx) => i == truthLabel && i == predictions[idx]).Count(),
                FalsePositives = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] == truthLabel).Count(),

                TrueNegatives  = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] != truthLabel).Count(),
                FalseNegatives = actual.Where((i, idx) => i == truthLabel && (predictions[idx] == falseLabel || predictions[idx] != truthLabel)).Count(),

                Examples = predictions.Length
            };

            score._IsBinary = actual.IsBinary();

            // if the labels are continuous values then calculate accuracy manually
            if (!score._IsBinary)
            {
                score._totalAccuracy = (predictions.Where((d, idx) => d == actual[idx]).Count() / predictions.Length);
            }

            score.RMSE         = Score.ComputeRMSE(predictions, actual);
            score.CoefRMSE     = Score.ComputeCoefRMSE(predictions, actual);
            score.NormRMSE     = Score.ComputeRMSE(predictions, actual);
            score.MeanAbsError = Score.ComputeMeanError(predictions, actual);
            score.SSE          = Score.ComputeSSE(predictions, actual);
            score.MSE          = Score.ComputeMSE(predictions, actual);
            score.CrossEntropy = Score.ComputeCrossEntropy(predictions, actual);

            return(score);
        }
示例#2
0
文件: Score.cs 项目: sethjuarez/numl
        /// <summary>
        /// Scores a set of predictions against the actual values.
        /// </summary>
        /// <param name="predictions">Predicted values.</param>
        /// <param name="actual">Actual values.</param>
        /// <param name="truthLabel">(Optional) the truth label in the <paramref name="actual"/> vector.</param>
        /// <param name="falseLabel">(Optional) the false label in the <paramref name="actual"/> vector.</param>
        /// <returns></returns>
        public static Score ScorePredictions(Vector predictions, Vector actual, 
                                            double truthLabel = Ject.DefaultTruthValue, double falseLabel = Ject.DefaultFalseValue)
        {
            var score = new numl.Supervised.Score()
            {
                TotalPositives = actual.Where(w => w == truthLabel).Count(),
                TotalNegatives = actual.Where(w => (w == falseLabel || w != truthLabel)).Count(),

                TruePositives = actual.Where((i, idx) => i == truthLabel && i == predictions[idx]).Count(),
                FalsePositives = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] == truthLabel).Count(),

                TrueNegatives = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] != truthLabel).Count(),
                FalseNegatives = actual.Where((i, idx) => i == truthLabel && (predictions[idx] == falseLabel || predictions[idx] != truthLabel)).Count(),

                Examples = predictions.Length
            };

            score._IsBinary = actual.IsBinary();

            // if the labels are continuous values then calculate accuracy manually
            if (!score._IsBinary)
            {
                score._totalAccuracy = (predictions.Where((d, idx) => d == actual[idx]).Count() / predictions.Length);
            }

            score.RMSE = Score.ComputeRMSE(predictions, actual);
            score.CoefRMSE = Score.ComputeCoefRMSE(predictions, actual);
            score.NormRMSE = Score.ComputeRMSE(predictions, actual);
            score.MeanAbsError = Score.ComputeMeanError(predictions, actual);
            score.SSE = Score.ComputeSSE(predictions, actual);
            score.MSE = Score.ComputeMSE(predictions, actual);

            return score;
        }