/// <summary> /// Scores a set of predictions against the actual values. /// </summary> /// <param name="predictions">Predicted values.</param> /// <param name="actual">Actual values.</param> /// <param name="truthLabel">(Optional) the truth label in the <paramref name="actual"/> vector.</param> /// <param name="falseLabel">(Optional) the false label in the <paramref name="actual"/> vector.</param> /// <returns></returns> public static Score ScorePredictions(Vector predictions, Vector actual, double truthLabel = Ject.DefaultTruthValue, double falseLabel = Ject.DefaultFalseValue) { var score = new numl.Supervised.Score() { TotalPositives = actual.Where(w => w == truthLabel).Count(), TotalNegatives = actual.Where(w => (w == falseLabel || w != truthLabel)).Count(), TruePositives = actual.Where((i, idx) => i == truthLabel && i == predictions[idx]).Count(), FalsePositives = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] == truthLabel).Count(), TrueNegatives = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] != truthLabel).Count(), FalseNegatives = actual.Where((i, idx) => i == truthLabel && (predictions[idx] == falseLabel || predictions[idx] != truthLabel)).Count(), Examples = predictions.Length }; score._IsBinary = actual.IsBinary(); // if the labels are continuous values then calculate accuracy manually if (!score._IsBinary) { score._totalAccuracy = (predictions.Where((d, idx) => d == actual[idx]).Count() / predictions.Length); } score.RMSE = Score.ComputeRMSE(predictions, actual); score.CoefRMSE = Score.ComputeCoefRMSE(predictions, actual); score.NormRMSE = Score.ComputeRMSE(predictions, actual); score.MeanAbsError = Score.ComputeMeanError(predictions, actual); score.SSE = Score.ComputeSSE(predictions, actual); score.MSE = Score.ComputeMSE(predictions, actual); score.CrossEntropy = Score.ComputeCrossEntropy(predictions, actual); return(score); }
/// <summary> /// Scores a set of predictions against the actual values. /// </summary> /// <param name="predictions">Predicted values.</param> /// <param name="actual">Actual values.</param> /// <param name="truthLabel">(Optional) the truth label in the <paramref name="actual"/> vector.</param> /// <param name="falseLabel">(Optional) the false label in the <paramref name="actual"/> vector.</param> /// <returns></returns> public static Score ScorePredictions(Vector predictions, Vector actual, double truthLabel = Ject.DefaultTruthValue, double falseLabel = Ject.DefaultFalseValue) { var score = new numl.Supervised.Score() { TotalPositives = actual.Where(w => w == truthLabel).Count(), TotalNegatives = actual.Where(w => (w == falseLabel || w != truthLabel)).Count(), TruePositives = actual.Where((i, idx) => i == truthLabel && i == predictions[idx]).Count(), FalsePositives = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] == truthLabel).Count(), TrueNegatives = actual.Where((i, idx) => (i == falseLabel || i != truthLabel) && predictions[idx] != truthLabel).Count(), FalseNegatives = actual.Where((i, idx) => i == truthLabel && (predictions[idx] == falseLabel || predictions[idx] != truthLabel)).Count(), Examples = predictions.Length }; score._IsBinary = actual.IsBinary(); // if the labels are continuous values then calculate accuracy manually if (!score._IsBinary) { score._totalAccuracy = (predictions.Where((d, idx) => d == actual[idx]).Count() / predictions.Length); } score.RMSE = Score.ComputeRMSE(predictions, actual); score.CoefRMSE = Score.ComputeCoefRMSE(predictions, actual); score.NormRMSE = Score.ComputeRMSE(predictions, actual); score.MeanAbsError = Score.ComputeMeanError(predictions, actual); score.SSE = Score.ComputeSSE(predictions, actual); score.MSE = Score.ComputeMSE(predictions, actual); return score; }