示例#1
0
        /// <summary>
        /// Prepares for parallel execution.
        /// </summary>
        /// <param name="tools">The tools.</param>
        /// <param name="_context">The context.</param>
        public webProjectKnowledgeSet PrepareForParallelExecution(classifierTools tools, experimentExecutionContext _context)
        {
            if (caseKnowledgeSet == null)
            {
                caseKnowledgeSet = new webProjectKnowledgeSet();
            }

            if (items.Any())
            {
                experimentContext.notes.log("Mining Context was ready already.");
                return(caseKnowledgeSet);
            }
            DateTime startTime = DateTime.Now;

            experimentContext = _context;



            List <webCaseKnowledge> cases = new List <webCaseKnowledge>();

            folderNode classReportFolder = experimentContext.folder.Add("General", "General and diagnostic reports", "The folder contains general (outside k-folds) reports on analysied industries (categories), web sites and other diagnostic data");

            // <----------------------------------------------------------------------------------------------------------------        [ performing pipeline ]
            experimentContext.notes.log("Executing the Mining Context decomposition with the pipeline model");
            foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses())
            {
                var pipelineContext = GetContextForPipeline(tools, classSet);
                sitesByCategory.Add(classSet, new List <pipelineTaskMCSiteSubject>());

                if (!pipelineContext.exitByType.ContainsKey(typeof(pipelineTaskMCSiteSubject)))
                {
                    throw new aceGeneralException("Pipeline context output contains no web site subjects! Check the pipeline Site Task constructor.", null, pipelineContext, "Pipeline broken");
                }

                var sitesForContext = pipelineContext.exitByType[typeof(pipelineTaskMCSiteSubject)]; // <----- preparing
                foreach (var site in sitesForContext)
                {
                    tokenBySite.Add(site as pipelineTaskMCSiteSubject, new ConcurrentBag <pipelineTaskSubjectContentToken>());
                    sitesByCategory[classSet].Add(site as pipelineTaskMCSiteSubject);

                    webCaseKnowledge webCase = new webCaseKnowledge(site as pipelineTaskMCSiteSubject, classSet);

                    caseKnowledgeSet.Add(webCase);
                    cases.Add(webCase);
                }

                semanticFVExtractorKnowledge kn = new semanticFVExtractorKnowledge();
                kn.name = classSet.name + "_general";
                kn.relatedItemPureName = classSet.name;
                kn.type = WebFVExtractorKnowledgeType.aboutCompleteCategory;
                kn.Deploy(classReportFolder, experimentContext.logger);
                knowledgeByClass.TryAdd(classSet, kn);
            }

            experimentContext.notes.log("Sorting tokens for all sites [in parallel]");
            Parallel.ForEach(tokenBySite.Keys, site =>
            {
                var leafs = site.getAllLeafs();
                foreach (var leaf in leafs)
                {
                    pipelineTaskSubjectContentToken token = leaf as pipelineTaskSubjectContentToken;
                    if (token != null)
                    {
                        tokenBySite[site].Add(token);
                    }
                }
            });

            foreach (var c in cases)
            {
                c.tokens = tokenBySite[c.MCSiteSubject];
            }


            experimentContext.notes.log("Building diagnostic TF-IDF master tables for all classes [in parallel]");


            Boolean useIntegratedApproach = false;



            if (useIntegratedApproach)
            {
                var valCase = experimentContext.validationCollections[experimentContext.masterExtractor.name].GetDiagnosticCase(experimentContext.classes);
                Parallel.ForEach(sitesByCategory, pair =>
                {
                    knowledgeByClass.TryAdd(pair.Key, experimentContext.masterExtractor.DoFVExtractionForClassViaCases(valCase.trainingCases[pair.Key.classID], pair.Key, valCase, experimentContext.tools, experimentContext.logger));
                });
            }
            else
            {
                Parallel.ForEach(sitesByCategory, pair =>
                {
                    IDocumentSetClass category             = pair.Key;
                    List <pipelineTaskMCSiteSubject> sites = pair.Value;

                    var lt = BuildLemmaTableForClass(tools, category, sites);
                    lt.Save();
                    // lt.SaveAs(classReportFolder.pathFor(lt.info.Name), imbSCI.Data.enums.getWritableFileMode.overwrite);
                });
            }

            experimentContext.notes.log("Saving lexic resource cache subset - for later reuse in case of repeated experiment run");
            tools.SaveCache();


            if (!useIntegratedApproach)
            {
                experimentContext.notes.log("Performing chunk construction for all web sites in all categories [in serial]");



                foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses())
                {
                    BuildChunksForClass(tools, classSet);
                }



                foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses())
                {
                    experimentContext.masterExtractor.chunkTableConstructor.process(chunksByCategory[classSet], cnt_level.mcPage, knowledgeByClass[classSet].WLChunkTableOfIndustryClass, null, experimentContext.logger, false);
                }
            }

            if (tools.operation.doCreateDiagnosticMatrixAtStart)
            {
                experimentContext.notes.log("Performing diagnostic analysis on all categories...[doCreateDiagnosticMatrixAtStart=true]");



                folderNode matrixReport = classReportFolder.Add("clouds", "More reports on semantic cloud", "Directory contains exported DirectedGraphs, varous matrix derivates, combined cloud and other diagnostic things");

                List <lemmaSemanticCloud> clouds         = new List <lemmaSemanticCloud>();
                List <lemmaSemanticCloud> filteredClouds = new List <lemmaSemanticCloud>();

                var converter = lemmaSemanticCloud.GetDGMLConverter();

                foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses())
                {
                    // experimentContext.masterExtractor.chunkTableConstructor.process(chunksByCategory[classSet], cnt_level.mcPage, knowledgeByClass[classSet].WLChunkTableOfIndustryClass, null, experimentContext.logger, false);


                    var cloud = experimentContext.masterExtractor.CloudConstructor.process(knowledgeByClass[classSet].WLChunkTableOfIndustryClass, knowledgeByClass[classSet].WLTableOfIndustryClass, knowledgeByClass[classSet].semanticCloud, experimentContext.logger, tokenBySite.Keys.ToList(), tools.GetLemmaResource());
                    knowledgeByClass[classSet].semanticCloud.className = classSet.name;
                    clouds.Add(cloud);

                    if (experimentContext.tools.operation.doUseSimpleGraphs)
                    {
                        cloud.GetSimpleGraph(true).Save(matrixReport.pathFor("cloud_initial_" + classSet.name, imbSCI.Data.enums.getWritableFileMode.none, "Initial version of full-sample set, diagnostic Semantic Cloud for category [" + classSet.name + "]"));
                    }
                    else
                    {
                        converter.ConvertToDMGL(cloud).Save(matrixReport.pathFor("cloud_initial_" + classSet.name, imbSCI.Data.enums.getWritableFileMode.none, "Initial version of full-sample set, diagnostic Semantic Cloud for category [" + classSet.name + "]"));
                    }



                    knowledgeByClass[classSet].semanticCloudFiltered           = knowledgeByClass[classSet].semanticCloud.CloneIntoType <lemmaSemanticCloud>(true);
                    knowledgeByClass[classSet].semanticCloudFiltered.className = classSet.name;
                    filteredClouds.Add(knowledgeByClass[classSet].semanticCloudFiltered);
                }

                cloudMatrix matrix = new cloudMatrix("CloudMatrix", "Diagnostic cloud matrix created from the complete sample set of [" + clouds.Count() + "] classes");
                matrix.build(filteredClouds, experimentContext.logger);

                lemmaSemanticCloud mergedCloudInitial = matrix.GetUnifiedCloud();
                mergedCloudInitial.Save(matrixReport.pathFor("unified_initial_cloud.xml", imbSCI.Data.enums.getWritableFileMode.overwrite, "Serialized object - Initial version of Semantic Cloud built as union of full-sample set Semantic Clouds of all categories"));


                var reductions = matrix.TransformClouds(experimentContext.masterExtractor.settings.semanticCloudFilter, experimentContext.logger);

                var p = matrixReport.pathFor("reductions_nodes.txt", imbSCI.Data.enums.getWritableFileMode.overwrite, "Report on Cloud Matrix transformation process");
                File.WriteAllLines(p, reductions);



                matrix.BuildTable(experimentContext.masterExtractor.settings.semanticCloudFilter, cloudMatrixDataTableType.initialState | cloudMatrixDataTableType.maxCloudFrequency | cloudMatrixDataTableType.absoluteValues).GetReportAndSave(matrixReport, appManager.AppInfo, "matrix_max_cf_initial", true, experimentContext.tools.operation.doReportsInParalell);

                matrix.BuildTable(experimentContext.masterExtractor.settings.semanticCloudFilter, cloudMatrixDataTableType.initialState | cloudMatrixDataTableType.overlapSize | cloudMatrixDataTableType.absoluteValues).GetReportAndSave(matrixReport, appManager.AppInfo, "matrix_overlap_size_initial", true, experimentContext.tools.operation.doReportsInParalell);

                matrix.BuildTable(experimentContext.masterExtractor.settings.semanticCloudFilter, cloudMatrixDataTableType.initialState | cloudMatrixDataTableType.overlapValue | cloudMatrixDataTableType.absoluteValues).GetReportAndSave(matrixReport, appManager.AppInfo, "matrix_overlap_value_initial", true, experimentContext.tools.operation.doReportsInParalell);


                matrix.ExportTextReports(matrixReport, true, "matrix_cf");
                matrix.ExportTextReports(matrixReport, false, "matrix_cf");

                lemmaSemanticCloud mergedCloudAfterReduction = matrix.GetUnifiedCloud();
                mergedCloudAfterReduction.Save(matrixReport.pathFor("unified_reduced_cloud.xml", imbSCI.Data.enums.getWritableFileMode.overwrite, "Serialized object -Version of all-categories diagnostic Semantic Cloud, after Cloud Matrix filter was applied"));

                if (experimentContext.tools.operation.doUseSimpleGraphs)
                {
                    mergedCloudInitial.GetSimpleGraph(true).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)"));
                }
                else
                {
                    converter = lemmaSemanticCloud.GetDGMLConverter();

                    converter.ConvertToDMGL(mergedCloudInitial).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)"));
                }


                // <-------- analysis -----------------------------------------------------------------------------------
                DataTableTypeExtended <freeGraphReport> cloudReports = new DataTableTypeExtended <freeGraphReport>();
                foreach (var cl in filteredClouds)
                {
                    freeGraphReport fgReport = new freeGraphReport(cl);
                    fgReport.Save(matrixReport);
                    cloudReports.AddRow(fgReport);
                }
                freeGraphReport unifiedReport = new freeGraphReport(mergedCloudAfterReduction);
                unifiedReport.Save(matrixReport);
                cloudReports.AddRow(unifiedReport);


                cloudReports.GetReportAndSave(matrixReport, appManager.AppInfo, "analysis_SemanticClouds");
                // <-------- analysis -----------------------------------------------------------------------------------



                foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses())
                {
                    var cloud = knowledgeByClass[classSet].semanticCloudFiltered; // .WLChunkTableOfIndustryClass, knowledgeByClass[classSet].WLTableOfIndustryClass, knowledgeByClass[classSet].semanticCloud, experimentContext.logger, tokenBySite.Keys.ToList());


                    if (experimentContext.tools.operation.doUseSimpleGraphs)
                    {
                        cloud.GetSimpleGraph(true).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)"));
                    }
                    else
                    {
                        converter = lemmaSemanticCloud.GetDGMLConverter();

                        converter.ConvertToDMGL(cloud).Save(matrixReport.pathFor("unified_initial_cloud", imbSCI.Data.enums.getWritableFileMode.overwrite, "DirectedGraphML file - unified Semantic Cloud, before Cloud Matrix filter was applied - Open this in VisualStudo)"));
                    }



                    //converter.ConvertToDMGL(cloud).Save(matrixReport.pathFor("cloud_reduced_" + classSet.name, imbSCI.Data.enums.getWritableFileMode.none, "DirectedGraphML file - Initial version of Semantic Cloud built as union of full-sample set Semantic Clouds of all categories (Open this with VS)"), imbSCI.Data.enums.getWritableFileMode.overwrite);
                }

                instanceCountCollection <String> tfcounter = new instanceCountCollection <string>();
                foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses())
                {
                    var wlt = knowledgeByClass[classSet].WLTableOfIndustryClass.GetDataTable();
                    wlt.DefaultView.Sort = "termFrequency desc";
                    var sorted = wlt.DefaultView.ToTable();
                    var tbl    = wlt.GetClonedShema <DataTable>(true);

                    tbl.CopyRowsFrom(sorted, 0, 100);
                    tbl.GetReportAndSave(classReportFolder, appManager.AppInfo, classSet.name + "_WebLemma", true, experimentContext.tools.operation.doReportsInParalell);

                    var cht = knowledgeByClass[classSet].WLChunkTableOfIndustryClass.GetDataTable();
                    cht.DefaultView.Sort = "termFrequency desc";
                    var csorted = cht.DefaultView.ToTable();

                    tbl = cht.GetClonedShema <DataTable>(true);
                    tbl.CopyRowsFrom(csorted, 0, 100);
                    tbl.GetReportAndSave(classReportFolder, appManager.AppInfo, classSet.name + "_Chunks", true, experimentContext.tools.operation.doReportsInParalell);

                    tfcounter.AddInstanceRange(knowledgeByClass[classSet].WLTableOfIndustryClass.unresolved);


                    knowledgeByClass[classSet].OnBeforeSave();
                }

                List <String> countSorted = tfcounter.getSorted();
                StringBuilder sb          = new StringBuilder();
                foreach (String s in countSorted)
                {
                    sb.AppendLine(String.Format("{1}  :  {0}", s, tfcounter[s]));
                }
                String pt = classReportFolder.pathFor("unresolved_tokens.txt", imbSCI.Data.enums.getWritableFileMode.none, "Cloud Frequency list of all unresolved letter-only tokens");
                File.WriteAllText(pt, sb.ToString());
            }


            if (tools.operation.doFullDiagnosticReport)
            {
                experimentContext.notes.log("Generating full diagnostic report on classes...");
                DataTable rep = null;
                foreach (IDocumentSetClass classSet in experimentContext.classes.GetClasses())
                {
                    rep = this.GetClassKnowledgeReport(classSet, rep);
                }
                rep.SetAdditionalInfoEntry("Experiment", experimentContext.setup.name);

                rep.AddExtra("Experiment: " + experimentContext.setup.name);

                rep.AddExtra("Info: " + experimentContext.setup.description);

                rep.SetDescription("Structural report for all classes in the experiment");
                rep.GetReportAndSave(classReportFolder, appManager.AppInfo, "structural_class_report", true, experimentContext.tools.operation.doReportsInParalell);
            }

            classReportFolder.generateReadmeFiles(appManager.AppInfo);


            experimentContext.notes.log("Mining Context preprocessing done in [" + DateTime.Now.Subtract(startTime).TotalMinutes.ToString("F2") + "] minutes");
            return(caseKnowledgeSet);
        }
示例#2
0
        public void TestCloudWeaver()
        {
            folderNode folder = new folderNode();

            folderNode weaverFolder   = folder.Add("NLP\\CloudWeaver", "Cloud Weaver", "Folder with results of cloud weaver tests");
            folderNode cloudFolder    = folder.Add("Clouds", "Test resources", "");
            folderNode resourceFolder = folder.Add("resources", "Test resources", "");

            lemmaSemanticWeaver weaver = new lemmaSemanticWeaver();

            weaver.prepare(resourceFolder, null);


            weaver.useSimilarity  = true;
            weaver.similarWords.N = 2;
            weaver.similarWords.gramConstruction = nGramsModeEnum.overlap;
            weaver.similarWords.treshold         = 0.6;
            weaver.similarWords.equation         = nGramsSimilarityEquationEnum.DiceCoefficient;

            weaver.useDictionary = false;

            var cloudPaths = cloudFolder.findFiles("*_initialCloud.xml", SearchOption.TopDirectoryOnly);

            foreach (String path in cloudPaths)
            {
                lemmaSemanticCloud testCloud = lemmaSemanticCloud.Load <lemmaSemanticCloud>(path);

                testCloud.GetSimpleGraph(false).Save(weaverFolder.pathFor(testCloud.className + "_initial.dgml", imbSCI.Data.enums.getWritableFileMode.overwrite), imbSCI.Data.enums.getWritableFileMode.overwrite);

                var report = weaver.Process(testCloud, null);
                report.Save(weaverFolder, "DiceCoefficient");
            }

            weaver.similarWords.equation = nGramsSimilarityEquationEnum.JaccardIndex;

            foreach (String path in cloudPaths)
            {
                lemmaSemanticCloud testCloud = lemmaSemanticCloud.Load <lemmaSemanticCloud>(path);

                var report = weaver.Process(testCloud, null);
                report.Save(weaverFolder, "JaccardIndex");
            }

            weaver.similarWords.equation = nGramsSimilarityEquationEnum.continualOverlapRatio;

            foreach (String path in cloudPaths)
            {
                lemmaSemanticCloud testCloud = lemmaSemanticCloud.Load <lemmaSemanticCloud>(path);

                var report = weaver.Process(testCloud, null);
                report.Save(weaverFolder, "ContinualOverlap");

                objectSerialization.saveObjectToXML(testCloud, weaverFolder.pathFor(testCloud.className + "_weaved.xml", imbSCI.Data.enums.getWritableFileMode.overwrite, "Processed cloud"));

                testCloud.GetSimpleGraph(false).Save(weaverFolder.pathFor(testCloud.className + "_weaved.dgml", imbSCI.Data.enums.getWritableFileMode.overwrite), imbSCI.Data.enums.getWritableFileMode.overwrite);
            }


            //weaver.similarWords.equation = nGramsSimilarityEquationEnum.continualOverlapRatio;
            //weaver.useDictionary = true;

            //foreach (String path in cloudPaths)
            //{
            //    lemmaSemanticCloud testCloud = lemmaSemanticCloud.Load<lemmaSemanticCloud>(path);

            //    var report = weaver.Process(testCloud, null);
            //    report.Save(weaverFolder, "JaccardIndexAndApertium");



            //}

            folder.generateReadmeFiles(new imbSCI.Core.data.aceAuthorNotation());
        }