示例#1
0
        private static void ConvertToSecondaryArc(designGraph graph, Dictionary <int, List <NonAdjacentBlockings> > NonAdjacentBlocking)
        {
            foreach (var key in NonAdjacentBlocking.Keys.ToList())
            {
                var dirs = (from gDir in DisassemblyDirections.Directions
                            where
                            1 - Math.Abs(gDir.dotProduct(DisassemblyDirections.Directions[key])) <
                            OverlappingFuzzification.CheckWithGlobDirsParall
                            select DisassemblyDirections.Directions.IndexOf(gDir)).ToList();
                var oppositeDir = dirs.Where(d => d != key).ToList();
                foreach (var blockings in NonAdjacentBlocking[key])
                {
                    var from = graph.nodes.Where(n => n.name == blockings.blockingSolids[0].Name).Cast <Component>().ToList()[0]; // blocked
                    var to   = graph.nodes.Where(n => n.name == blockings.blockingSolids[1].Name).Cast <Component>().ToList()[0]; // blocking

                    // if the opprosite direction exists for to and from instead of from and to, do not add the arc.
                    // if a is blocked by b in z direction, b is blocked by a in -z direction. So no need to add an additional arc.

                    if (dirs.Count > 1)
                    {
                        if (
                            graph.arcs.Where(arc => arc is SecondaryConnection)
                            .Cast <SecondaryConnection>()
                            .Any(
                                SC =>
                                (SC.From == to && SC.To == from && SC.Directions.Contains(oppositeDir[0])) ||
                                (SC.From == from && SC.To == to && SC.Directions.Contains(key))))
                        {
                            continue;
                        }
                    }

                    var existing = graph.arcs.OfType <SecondaryConnection>()
                                   .Where(exist => (exist.From == from && exist.To == to) || (exist.To == from && exist.From == to))
                                   .ToList();
                    if (existing.Any())
                    {
                        if (existing[0].From == from && existing[0].To == to && !existing[0].Directions.Contains(key))
                        {
                            existing[0].Directions.Add(key);
                        }
                        else
                        {
                            if (oppositeDir.Any() && !existing[0].Directions.Contains(oppositeDir[0]))
                            {
                                existing[0].Directions.Add(oppositeDir[0]);
                            }
                        }
                    }
                    else
                    {
                        graph.addArc(from, to, "", typeof(SecondaryConnection));
                        var a = (SecondaryConnection)graph.arcs.Last();
                        a.Directions.Add(key);
                        //a.Distance = blockings.blockingDistance;
                    }
                }
            }
        }
        private static void UpdateGraphArcs(List <arc> reviewedArc)
        {
            foreach (Connection arc in reviewedArc)
            {
                //$ Incorperated the ability to add arcs, because otherwise resolving incomplete graphs
                //  would be impossible

                bool reversed    = false;
                var  counterpart = (Connection)AssemblyGraph.arcs.FirstOrDefault(c => c.XmlFrom == arc.XmlFrom && c.XmlTo == arc.XmlTo);

                if (counterpart == null)
                {
                    counterpart = (Connection)AssemblyGraph.arcs.FirstOrDefault(c => c.XmlTo == arc.XmlFrom && c.XmlFrom == arc.XmlTo);
                    if (counterpart != null)
                    {
                        reversed = true;
                    }
                }

                if (counterpart == null)
                {
                    AssemblyGraph.addArc(AssemblyGraph.nodes.First(a => a.name == arc.XmlFrom),
                                         AssemblyGraph.nodes.First(a => a.name == arc.XmlTo), "", typeof(Connection));
                    counterpart = (Connection)AssemblyGraph.arcs.Last();
                }
                else
                {
                    if (arc.Certainty == 0)
                    {
                        AssemblyGraph.removeArc(counterpart);
                    }
                }

                counterpart.FiniteDirections   = AddDirections(arc.FiniteDirections);
                counterpart.InfiniteDirections = AddDirections(arc.InfiniteDirections);
            }
        }
        private static void CheckToHaveConnectedGraph(designGraph assemblyGraph)
        {
            // The code will crash if the graph is not connected
            // let's take a look:
            var batches       = new List <HashSet <Component> >();
            var stack         = new Stack <Component>();
            var visited       = new HashSet <Component>();
            var globalVisited = new HashSet <Component>();

            foreach (Component Component in assemblyGraph.nodes.Where(n => !globalVisited.Contains(n)))
            {
                stack.Clear();
                visited.Clear();
                stack.Push(Component);
                while (stack.Count > 0)
                {
                    var pNode = stack.Pop();
                    visited.Add(pNode);
                    globalVisited.Add(pNode);
                    List <Connection> a2;
                    lock (pNode.arcs)
                        a2 = pNode.arcs.Where(a => a is Connection).Cast <Connection>().ToList();

                    foreach (Connection arc in a2)
                    {
                        if (!assemblyGraph.nodes.Contains(arc.From) || !assemblyGraph.nodes.Contains(arc.To))
                        {
                            continue;
                        }
                        var otherNode = (Component)(arc.From == pNode ? arc.To : arc.From);
                        if (visited.Contains(otherNode))
                        {
                            continue;
                        }
                        stack.Push(otherNode);
                    }
                }
                if (visited.Count == assemblyGraph.nodes.Count)
                {
                    return;
                }
                batches.Add(new HashSet <Component>(visited));
            }
            Console.WriteLine("\nSome of the assembly parts are not connected to the rest of the model.");
            var referenceBatch = batches[0];
            var c      = false;
            var visits = 0;
            var loop   = 0;

            while (referenceBatch.Count < assemblyGraph.nodes.Count)
            {
                loop++;
                if (loop >= 15)
                {
                    break;
                }
                foreach (var rb in referenceBatch)
                {
                    for (var j = 1; j < batches.Count; j++)
                    {
                        foreach (var b in batches[j])
                        {
                            foreach (var p1 in StartProcess.Solids[rb.name])
                            {
                                foreach (var p2 in StartProcess.Solids[b.name])
                                {
                                    if (BlockingDetermination.BoundingBoxOverlap(p1, p2))
                                    {
                                        if (BlockingDetermination.ConvexHullOverlap(p1, p2))
                                        {
                                            visits++;
                                            if (visits == 1)
                                            {
                                                Console.WriteLine(
                                                    "\n   * Since the graph needs to be connected, the following connections are added by the software:");
                                            }
                                            // add a connection with low cetainty between them
                                            var lastAdded = (Connection)assemblyGraph.addArc(rb, b, "", typeof(Connection));
                                            lastAdded.Certainty = 0.1;
                                            referenceBatch.UnionWith(batches[j]);
                                            batches.RemoveAt(j);
                                            c = true;
                                            Console.WriteLine("\n      - " + lastAdded.XmlFrom + lastAdded.XmlTo);
                                        }
                                    }
                                    if (c)
                                    {
                                        break;
                                    }
                                }
                                if (c)
                                {
                                    break;
                                }
                            }
                            if (c)
                            {
                                break;
                            }
                        }
                        if (c)
                        {
                            break;
                        }
                    }
                    if (c)
                    {
                        break;
                    }
                }
            }
            if (loop < 15)
            {
                Console.WriteLine(
                    "\n   * When you are reviewing the connections, please pay a closer attention to the connections above");
            }
            else
            {
                Console.WriteLine("\n   * Some connections must be added manually between the following batches");
            }
            for (int i = 0; i < batches.Count; i++)
            {
                var batch = batches[i];
                Console.WriteLine("\n      - Batch " + i + ":");
                foreach (var component in batch)
                {
                    Console.WriteLine("         + " + component.name);
                }
            }
        }
        static void Main(string[] args)
        {
            var Solids           = StartProcess.Solids;
            var solidsNoFastener = StartProcess.SolidsNoFastener;
            //PrintOutSomeInitialStats();
            var globalDirPool = new List <int>();
            // Detect gear mates
            //------------------------------------------------------------------------------------------
            var gears = GearDetector.Run(StartProcess.PartsWithOneGeom, StartProcess.SolidPrimitive);
            var sw    = new Stopwatch();

            sw.Start();

            // Add the solids as nodes to the graph. Exclude the fasteners
            //------------------------------------------------------------------------------------------
            //DisassemblyDirections.Solids = new List<TessellatedSolid>(solidsNoFastener);
            AddingNodesToGraph(AssemblyGraph, solidsNoFastener); //, gears, screwsAndBolts);

            // Implementing region octree for every solid
            //------------------------------------------------------------------------------------------
            PartitioningSolid.Partitions     = new Dictionary <TessellatedSolid, Partition[]>();
            PartitioningSolid.PartitionsAABB = new Dictionary <TessellatedSolid, PartitionAABB[]>();
            PartitioningSolid.CreatePartitions(solidsNoFastener);

            // Part to part interaction to obtain removal directions between every connected pair
            //------------------------------------------------------------------------------------------

            Console.WriteLine(" \n\nAdjacent Blocking Determination ...");
            var width = 55;

            //LoadingBar.start(width, 0);

            BlockingDetermination.OverlappingSurfaces = new List <OverlappedSurfaces>();
            var  solidNofastenerList = solidsNoFastener.ToList();
            long totalTriTobeChecked = 0;
            var  overlapCheck        = new HashSet <KeyValuePair <string, List <TessellatedSolid> >[]>();

            for (var i = 0; i < solidsNoFastener.Count - 1; i++)
            {
                var subAssem1 = solidNofastenerList[i];
                for (var j = i + 1; j < solidsNoFastener.Count; j++)
                {
                    var subAssem2 = solidNofastenerList[j];
                    overlapCheck.Add(new[] { subAssem1, subAssem2 });
                    var tri2Sub1 = subAssem1.Value.Sum(s => s.Faces.Length);
                    var tri2Sub2 = subAssem2.Value.Sum(s => s.Faces.Length);
                    totalTriTobeChecked += tri2Sub1 * tri2Sub2;
                }
            }
            var  total   = overlapCheck.Count;
            var  refresh = (int)Math.Ceiling(((float)total) / ((float)(width * 4)));
            var  check   = 0;
            long counter = 0;

            //foreach (var each in overlapCheck)
            Parallel.ForEach(overlapCheck, each =>
            {
                if (check % refresh == 0)
                {
                    //LoadingBar.refresh(width, ((float)check) / ((float)total));
                }
                check++;
                var localDirInd = new List <int>();
                for (var t = 0; t < StartProcess.Directions.Count; t++)
                {
                    localDirInd.Add(t);
                }
                var connected = false;
                var certainty = 0.0;
                foreach (var solid1 in each[0].Value)
                {
                    foreach (var solid2 in each[1].Value)
                    {
                        counter += solid1.Faces.Length * solid2.Faces.Length;
                        double localCertainty;
                        var blocked = BlockingDetermination.DefineBlocking(solid1, solid2, globalDirPool,
                                                                           localDirInd, out localCertainty);
                        if (connected == false)
                        {
                            connected = blocked;
                        }
                        if (localCertainty > certainty)
                        {
                            certainty = localCertainty;
                        }
                    }
                }
                if (connected)
                {
                    // I wrote the code in a way that "solid1" is always "Reference" and "solid2" is always "Moving".
                    // Update the romoval direction if it is a gear mate:
                    localDirInd = GearDetector.UpdateRemovalDirectionsIfGearMate(each[0].Value,
                                                                                 each[1].Value, gears, localDirInd);
                    List <int> finDirs, infDirs;
                    NonadjacentBlockingDetermination.FiniteDirectionsBetweenConnectedPartsWithPartitioning(
                        each[0].Value, each[1].Value, localDirInd, out finDirs, out infDirs);
                    lock (AssemblyGraph)
                    {
                        var from = AssemblyGraph[each[1].Key]; // Moving
                        var to   = AssemblyGraph[each[0].Key]; // Reference
                        AssemblyGraph.addArc((node)from, (node)to, "", typeof(Connection));
                        var a       = (Connection)AssemblyGraph.arcs.Last();
                        a.Certainty = certainty;
                        AddInformationToArc(a, finDirs, infDirs);
                    }
                }
            }//
                             );
            //LoadingBar.refresh(width, 1);
            Console.WriteLine("\n");
            FastenerFunctions.AddFastenersInformation(AssemblyGraph, solidsNoFastener, StartProcess.SolidPrimitive);
            // create oppositeDirections for global direction pool.
            FindingOppositeDirectionsForGlobalPool(globalDirPool);

            // Simplify the solids, before doing anything
            //------------------------------------------------------------------------------------------
            foreach (var solid in solidsNoFastener)
            {
                SolidsNoFastenerSimplified.Add(solid.Key, SimplifiedSolids[solid.Key]);
            }
            SimplifySolids(SimplifiedSolids, 0.7);

            // Implementing region octree for every solid
            //------------------------------------------------------------------------------------------
            PartitioningSolid.Partitions     = new Dictionary <TessellatedSolid, Partition[]>();
            PartitioningSolid.PartitionsAABB = new Dictionary <TessellatedSolid, PartitionAABB[]>();
            PartitioningSolid.CreatePartitions(SimplifiedSolids);

            CheckToHaveConnectedGraph(AssemblyGraph);
            ///return globalDirPool;
        }
        // This class is added as an alternative for current Nonadjacent blocking determination approach.
        // The overal approach is the same as before (ray shooting), but number of both rays and blocking
        // triangles are droped to speedup the function.
        // Rays: Instead of checking blockings for every direction, for every two parts, their possible
        //       blocking directions are found based upon the planes that can seperate the two CVHs linearlly.
        //       (If the CVHs are not linearly seperable we cannot apply this.)
        // Triangles: Number of triangles (of the blocking solid) is the most affecting factor in blocking
        //       determination. Code gets really really slow when it goes to check intersection of the ray
        //       and all the triangles of the solid. We are avoiding this problem here by partitionaning
        //       our search space into k number of sections obtained originally from OBB of the solid.
        internal static void Run(designGraph graph, Dictionary <string, List <TessellatedSolid> > subAssems, List <int> gDir)
        {
            Console.WriteLine("\n\nNonadjacent Blocking Determination is running ....");
            long totalCases      = 0;
            var  subAssemsToList = subAssems.ToList();

            for (var i = 0; i < subAssems.Count - 1; i++)
            {
                var subAssem1 = subAssemsToList[i];
                for (var j = i + 1; j < subAssems.Count; j++)
                {
                    var subAssem2 = subAssemsToList[j];
                    var tri2Sub1  = subAssem1.Value.Sum(s => s.Faces.Length);
                    var tri2Sub2  = subAssem2.Value.Sum(s => s.Faces.Length);
                    totalCases += tri2Sub1 * tri2Sub2;
                }
            }
            ObbFacesHashSet = new Dictionary <TessellatedSolid, HashSet <PolygonalFace> >();
            CombinedCVHForMultipleGeometries = new Dictionary <string, TVGLConvexHull>();

            long counter = 0;

            foreach (var subAssem in subAssems)
            {
                List <BoundingBox> pairList = new List <BoundingBox>();
                foreach (var s in subAssem.Value)
                {
                    //CvhHashSet.Add(s, new HashSet<PolygonalFace>(s.ConvexHull.Faces));


                    //$ What was used previously

                    /*
                     * ObbFacesHashSet.Add(s,
                     *  new HashSet<PolygonalFace>(
                     *      PartitioningSolid.TwelveFaceGenerator(
                     *          BoundingGeometry.OrientedBoundingBoxDic.First(b=> b.Key.Name == s.Name).Value.CornerVertices.Select(
                     *              cv => new Vertex(cv.Position)).ToArray())));
                     */
                    KeyValuePair <TessellatedSolid, BoundingBox> pair = BoundingGeometry.OrientedBoundingBoxDic.FirstOrDefault(b => b.Key.Name == s.Name);
                    if (!pair.Equals(default(KeyValuePair <TessellatedSolid, BoundingBox>)))
                    {
                        ObbFacesHashSet.Add(s, new HashSet <PolygonalFace>(PartitioningSolid.TwelveFaceGenerator(pair.Value.CornerVertices.Select(cv => new Vertex(cv.Position)).ToArray())));
                    }
                }
            }

            CreateCombinedCVHs(subAssems);



            var solidsL = subAssems.ToList();


            int width   = 55;
            int total   = (solidsL.Count + 1) * (solidsL.Count / 2);
            int refresh = (int)Math.Ceiling(((float)total) / ((float)(width)));
            int check   = 0;

            LoadingBar.start(width, 0);


            for (var i = 0; i < solidsL.Count; i++)
            {
                var solidMoving = solidsL[i].Value;
                for (var j = i + 1; j < solidsL.Count; j++)
                {
                    if (check % refresh == 0)
                    {
                        LoadingBar.refresh(width, ((float)check) / ((float)total));
                    }
                    check++;

                    var blocked = false;
                    // check the convex hull of these two solids to find the planes tha can linearly seperate them
                    // solid1 is moving and solid2 is blocking
                    var solidBlocking = solidsL[j].Value;
                    counter += solidMoving.Sum(s => s.Faces.Length) * solidBlocking.Sum(s => s.Faces.Length);
                    if (
                        graph.arcs.Any(
                            a => a is Connection &&
                            ((a.From.name == solidsL[i].Key && a.To.name == solidsL[j].Key) ||
                             (a.From.name == solidsL[j].Key && a.To.name == solidsL[i].Key))))
                    {
                        continue;
                    }
                    // Add a secondary arc to the
                    var from = GetNode(graph, solidsL[i].Key);
                    var to   = GetNode(graph, solidsL[j].Key);
                    graph.addArc(from, to, from.name + to.name, typeof(SecondaryConnection));
                    var lastAddedSecArc    = (SecondaryConnection)graph.arcs.Last();
                    var filteredDirections = FilterGlobalDirections(solidMoving, solidBlocking, gDir);
                    var oppositeFiltrdDirs = filteredDirections.Select(d => DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d]).ToList();
                    // remember this: if solid2 is not blocking solid1, we need to check if solid1 is blocking 2 in the opposite direction.
                    // if filteredDirections.Count == gDir.Count then the CVHs overlap
                    // Only directions need to be checked which the moving part can move along them:
                    var scndFilteredDirectionsMoving   = FinalSetOfDirectionsFinder(graph, solidMoving, filteredDirections);
                    var scndFilteredDirectionsBlocking = new List <int>();
                    scndFilteredDirectionsBlocking = FinalSetOfDirectionsFinder(graph, solidBlocking,
                                                                                filteredDirections.Count == gDir.Count ? filteredDirections : oppositeFiltrdDirs);
                    foreach (
                        var d in
                        scndFilteredDirectionsMoving.Where(
                            d =>
                            !scndFilteredDirectionsBlocking.Contains(
                                DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d])))
                    {
                        scndFilteredDirectionsBlocking.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d]);
                    }
                    foreach (
                        var d in
                        scndFilteredDirectionsBlocking.Where(
                            d =>
                            !scndFilteredDirectionsMoving.Contains(
                                DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d])))
                    {
                        scndFilteredDirectionsMoving.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[d]);
                    }
                    if (filteredDirections.Count == gDir.Count)
                    {
                        //continue;
                        Parallel.ForEach(scndFilteredDirectionsMoving, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationWithCvhOverlapping(direction, solidMoving, solidBlocking);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(filtDir);
                                if (
                                    scndFilteredDirectionsBlocking.Contains(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]))
                                {
                                    scndFilteredDirectionsBlocking.Remove(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                                }
                            }
                        });
                        Parallel.ForEach(scndFilteredDirectionsBlocking, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationWithCvhOverlapping(direction, solidBlocking, solidMoving);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                            }
                        });
                        if (lastAddedSecArc.Directions.Count == 0)
                        {
                            graph.removeArc(lastAddedSecArc);
                        }
                    }
                    else
                    {
                        //continue;
                        // If CVHs dont overlap:

                        //$ Made this non-parallel for debugging purposes - switch back later
                        Parallel.ForEach(scndFilteredDirectionsMoving, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationNoCvhOverlapping(direction, solidMoving, solidBlocking);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(filtDir);
                                if (
                                    scndFilteredDirectionsBlocking.Contains(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]))
                                {
                                    scndFilteredDirectionsBlocking.Remove(
                                        DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                                }
                            }
                        });

                        Parallel.ForEach(scndFilteredDirectionsBlocking, filtDir =>
                                         //foreach (var filtDir in filteredDirections)
                        {
                            var direction = DisassemblyDirections.Directions[filtDir];
                            blocked       = BlockingDeterminationNoCvhOverlapping(direction, solidBlocking, solidMoving);
                            if (blocked)
                            {
                                lock (lastAddedSecArc.Directions)
                                    lastAddedSecArc.Directions.Add(DisassemblyDirections.DirectionsAndOppositsForGlobalpool[filtDir]);
                            }
                        });
                        if (lastAddedSecArc.Directions.Count == 0)
                        {
                            graph.removeArc(lastAddedSecArc);
                        }
                    }
                }
            }
            LoadingBar.refresh(width, 1);
            CreateSameDirectionDictionary(gDir);
        }