示例#1
0
        /**
         * Computes the householder vector used in QR decomposition.
         *
         * u = x / max(x)
         * u(0) = u(0) + |u|
         * u = u / u(0)
         *
         * @param x Input vector.  Unmodified.
         * @return The found householder reflector vector
         */
        public static ZMatrixRMaj householderVector(ZMatrixRMaj x)
        {
            ZMatrixRMaj u = (ZMatrixRMaj)x.copy();

            double max = CommonOps_ZDRM.elementMaxAbs(u);

            CommonOps_ZDRM.elementDivide(u, max, 0, u);

            double      nx = NormOps_ZDRM.normF(u);
            Complex_F64 c  = new Complex_F64();

            u.get(0, 0, c);

            double realTau, imagTau;

            if (c.getMagnitude() == 0)
            {
                realTau = nx;
                imagTau = 0;
            }
            else
            {
                realTau = c.real / c.getMagnitude() * nx;
                imagTau = c.imaginary / c.getMagnitude() * nx;
            }

            u.set(0, 0, c.real + realTau, c.imaginary + imagTau);
            CommonOps_ZDRM.elementDivide(u, u.getReal(0, 0), u.getImag(0, 0), u);

            return(u);
        }
示例#2
0
 /**
  * Decomposes the input matrix 'a' and makes sure it isn't modified.
  */
 public static bool decomposeSafe(DecompositionInterface <ZMatrixRMaj> decomposition, ZMatrixRMaj a)
 {
     if (decomposition.inputModified())
     {
         a = (ZMatrixRMaj)a.copy();
     }
     return(decomposition.decompose(a));
 }
        /**
         * Returns the determinant of the matrix.  If the inverse of the matrix is also
         * needed, then using {@link LUDecompositionAlt_ZDRM} directly (or any
         * similar algorithm) can be more efficient.
         *
         * @param mat The matrix whose determinant is to be computed.  Not modified.
         * @return The determinant.
         */
        public static Complex_F64 det(ZMatrixRMaj mat)
        {
            LUDecompositionAlt_ZDRM alg = new LUDecompositionAlt_ZDRM();

            if (alg.inputModified())
            {
                mat = mat.copy();
            }

            if (!alg.decompose(mat))
            {
                return(new Complex_F64());
            }
            return(alg.computeDeterminant());
        }
示例#4
0
        /**
         * <p>
         * Checks to see if the matrix is positive definite.
         * </p>
         * <p>
         * x<sup>T</sup> A x &gt; 0<br>
         * for all x where x is a non-zero vector and A is a hermitian matrix.
         * </p>
         *
         * @param A square hermitian matrix. Not modified.
         *
         * @return True if it is positive definite and false if it is not.
         */
        public static bool isPositiveDefinite(ZMatrixRMaj A)
        {
            if (A.numCols != A.numRows)
            {
                return(false);
            }

            CholeskyDecompositionInner_ZDRM chol = new CholeskyDecompositionInner_ZDRM(true);

            if (chol.inputModified())
            {
                A = (ZMatrixRMaj)A.copy();
            }

            return(chol.decompose(A));
        }
        /**
         * <p>
         * Performs a matrix inversion operation that does not modify the original
         * and stores the results in another matrix.  The two matrices must have the
         * same dimension.<br>
         * <br>
         * b = a<sup>-1</sup>
         * </p>
         *
         * <p>
         * If the algorithm could not invert the matrix then false is returned.  If it returns true
         * that just means the algorithm finished.  The results could still be bad
         * because the matrix is singular or nearly singular.
         * </p>
         *
         * <p>
         * For medium to large matrices there might be a slight performance boost to using
         * {@link LinearSolverFactory_ZDRM} instead.
         * </p>
         *
         * @param input The matrix that is to be inverted. Not modified.
         * @param output Where the inverse matrix is stored.  Modified.
         * @return true if it could invert the matrix false if it could not.
         */
        public static bool invert(ZMatrixRMaj input, ZMatrixRMaj output)
        {
            LinearSolverDense <ZMatrixRMaj> solver = LinearSolverFactory_ZDRM.lu(input.numRows);

            if (solver.modifiesA())
            {
                input = input.copy();
            }

            if (!solver.setA(input))
            {
                return(false);
            }
            solver.invert(output);
            return(true);
        }