/// <summary> /// Calculates the Ring as a % of Ips /// </summary> private void CalculateRing() { double positiveLeadingEdgeNoiseValue = 0; double negativeLeadingEdgeNoiseValue = 0; if (this.compensateForNoise) { // (R&D experiment) A flag indicating that the noise reduction should use the peak-to-peak found in the zero line bool useZeroLineStrategy = true; // (R&D experiment) A flag indicating that the noise reduction should use a bessel-filtered waveform to remove the noise bool useBesselFilterStrategy = false; if (useZeroLineStrategy) { Waveform zeroLineBeforeTriggerWaveform = this.AbsoluteWaveform.TrimEnd(this.compensateForNoiseCutoffTime); positiveLeadingEdgeNoiseValue = zeroLineBeforeTriggerWaveform.Maximum().Y; negativeLeadingEdgeNoiseValue = zeroLineBeforeTriggerWaveform.Minimum().Y; } else if (useBesselFilterStrategy) { Waveform rawWaveform = this.AbsoluteIpsPlusPeakCurrentDerivationOffsetWaveform; Waveform besselWaveform = BesselDigitalFilter.FilterWaveform(rawWaveform); for (int i = 0; i < rawWaveform.DataPoints.Count(); i++) { positiveLeadingEdgeNoiseValue = System.Math.Max(positiveLeadingEdgeNoiseValue, rawWaveform.DataPoints.ElementAt(i).Y - besselWaveform.DataPoints.ElementAt(i).Y); negativeLeadingEdgeNoiseValue = System.Math.Min(negativeLeadingEdgeNoiseValue, rawWaveform.DataPoints.ElementAt(i).Y - besselWaveform.DataPoints.ElementAt(i).Y); } } } // Find Ring1 Data point (max positive ring) this.Ring1PeakDataPoint = this.AbsoluteIpsPlusPeakCurrentDerivationOffsetWaveform.DataPointAtHBM0OhmJS001MaximumRing(this.AbsoluteIpsPolynomial, positiveLeadingEdgeNoiseValue, true); // Find Y-value of FifthDegreePolynomial at the time of Ring1 double positiveRingLeastSquaresFitValue = this.AbsoluteIpsPolynomial.Evaluate(this.Ring1PeakDataPoint.X); // Find the difference between Ring1 and Ring1FDP double positiveRingCurrentDifference = this.Ring1PeakDataPoint.Y - positiveRingLeastSquaresFitValue; // Find the absolute value of the difference between Ring1 and Ring1FDP double positiveRingCurrentDifferenceAbs = System.Math.Abs(positiveRingCurrentDifference); // Find Ring2 Data point (max negative ring) this.Ring2PeakDataPoint = this.AbsoluteIpsPlusPeakCurrentDerivationOffsetWaveform.DataPointAtHBM0OhmJS001MaximumRing(this.AbsoluteIpsPolynomial, negativeLeadingEdgeNoiseValue, false); // Output the Ring2 DataPoint (max negative ring) // Find Y-value of FifthDegreePolynomial at the time of Ring2 double negativeRingLeastSquaresFitValue = this.AbsoluteIpsPolynomial.Evaluate(this.Ring2PeakDataPoint.X); // Find the difference between Ring2 and Ring2FDP double negativeRingCurrentDifference = this.Ring2PeakDataPoint.Y - negativeRingLeastSquaresFitValue; // Find the absolute value of the difference between Ring2 and Ring2FDP double negativeRingCurrentDifferenceAbs = System.Math.Abs(negativeRingCurrentDifference); // Add the two differences to get Ir double totalRingCurrent = positiveRingCurrentDifferenceAbs + negativeRingCurrentDifferenceAbs; // Determine the ringing % compared to Ips this.TotalRingPercentValue = totalRingCurrent / System.Math.Abs(this.PeakCurrentValue); // Determine whether the ringing % is passing this.TotalRingIsPassing = this.TotalRingPercentValue <= this.TotalRingAllowedMaximum; }