示例#1
0
        public List <VSignal> GetVEntities()
        {
            var entities = new List <VSignal>();

            using (var rdr = SqlHelper.ExecuteReader(this._databaseConnectionString, CommandType.Text, SqlCommands_Rs.Sql_Signal_Repository_GetVEntities, null)) {
                while (rdr.Read())
                {
                    var entity = new VSignal();
                    entity.AreaId       = SqlTypeConverter.DBNullStringHandler(rdr["AreaId"]);
                    entity.StationId    = SqlTypeConverter.DBNullStringHandler(rdr["StationId"]);
                    entity.RoomId       = SqlTypeConverter.DBNullStringHandler(rdr["RoomId"]);
                    entity.FsuId        = SqlTypeConverter.DBNullStringHandler(rdr["FsuId"]);
                    entity.DeviceId     = SqlTypeConverter.DBNullStringHandler(rdr["DeviceId"]);
                    entity.PointId      = SqlTypeConverter.DBNullStringHandler(rdr["PointId"]);
                    entity.Name         = SqlTypeConverter.DBNullStringHandler(rdr["Name"]);
                    entity.Type         = SqlTypeConverter.DBNullEnmPointHandler(rdr["Type"]);
                    entity.FormulaText  = SqlTypeConverter.DBNullStringHandler(rdr["FormulaText"]);
                    entity.FormulaValue = SqlTypeConverter.DBNullStringHandler(rdr["FormulaValue"]);
                    entity.UnitState    = SqlTypeConverter.DBNullStringHandler(rdr["UnitState"]);
                    entity.SavedPeriod  = SqlTypeConverter.DBNullInt32Handler(rdr["SavedPeriod"]);
                    entity.StaticPeriod = SqlTypeConverter.DBNullInt32Handler(rdr["StaticPeriod"]);
                    entity.Category     = SqlTypeConverter.DBNullVSignalCategoryHandler(rdr["Category"]);
                    entity.Remark       = SqlTypeConverter.DBNullStringHandler(rdr["Remark"]);
                    entities.Add(entity);
                }
            }
            return(entities);
        }
示例#2
0
        /// <summary>
        /// Constructs a new instance.
        /// </summary>
        /// <param name="xIntWidth">integer bits of operand</param>
        /// <param name="xFracWidth">fractional bits of operand</param>
        /// <param name="yIntWidth">integer bits of result</param>
        /// <param name="yFracWidth">fractional bits of result</param>
        /// <param name="pipeStages">desired computation-only latency</param>
        /// <param name="data">data table</param>
        public LERP11Core(int xIntWidth, int xFracWidth, int yIntWidth, int yFracWidth, int pipeStages,
                          SFix[] data)
        {
            Contract.Requires <ArgumentOutOfRangeException>(xIntWidth > 0, "xIntWidth must be positive.");
            Contract.Requires <ArgumentOutOfRangeException>(xFracWidth >= 0, "xFracWidth must be non-negative.");
            Contract.Requires <ArgumentOutOfRangeException>(yIntWidth + yFracWidth > 0, "total bit-width of result must be positive");
            Contract.Requires <ArgumentOutOfRangeException>(pipeStages >= 0, "pipeStages must be non-negative.");
            Contract.Requires <ArgumentOutOfRangeException>(xFracWidth > 0 || pipeStages == 0, "xFracWidth == 0 is a degenerate case (lookup-only). No additional pipeline stages allowed.");
            Contract.Requires <ArgumentNullException>(data != null, "data");

            PipeStages = pipeStages;
            XIntWidth  = xIntWidth;
            XFracWidth = xFracWidth;
            YIntWidth  = yIntWidth;
            YFracWidth = yFracWidth;
            DIntWidth  = data[0].Format.IntWidth;
            DFracWidth = data[0].Format.FracWidth;

            _x = new Signal <UFix>()
            {
                InitialValue = UFix.FromDouble(0.0, xIntWidth, xFracWidth)
            };
            _y = new Signal <SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, yIntWidth, yFracWidth)
            };
            AddrWidth = MathExt.CeilPow2(data.Length);
            _unitAddr = new Signal <Unsigned>()
            {
                InitialValue = Unsigned.FromUInt(0, AddrWidth)
            };
            _memContent = new VSignal <SFix>(data.Length, _ => new Signal <SFix>()
            {
                InitialValue = data[_]
            });

            _lerpUnit = new LERPUnit(xIntWidth, xFracWidth, yIntWidth, yFracWidth, pipeStages);
            Bind(() =>
            {
                _lerpUnit.Clk  = Clk;
                _lerpUnit.X    = _x;
                _lerpUnit.Y    = _y;
                _lerpUnit.Addr = _unitAddr;
                _lerpUnit.Data = _unitData;
            });
        }
示例#3
0
        /// <summary>
        /// Constructs a new instance
        /// </summary>
        /// <param name="lutWidth">resolution of data table</param>
        /// <param name="xFracWidth">fractional width of operand</param>
        /// <param name="yFracWidth">fractional width of result</param>
        /// <param name="pipeStages">additional pipeline stages for interpolation computation</param>
        public SinCosLUTCore(int lutWidth, int xFracWidth, int yFracWidth, int pipeStages)
        {
            PipeStages = pipeStages;
            XIntWidth  = 2;
            XFracWidth = xFracWidth;
            YIntWidth  = 2;
            YFracWidth = yFracWidth;
            DIntWidth  = 2;
            DFracWidth = yFracWidth;
            LUTWidth   = lutWidth;

            _x = new Signal <UFix>()
            {
                InitialValue = UFix.FromDouble(0.0, LUTWidth + 1, XFracWidth - LUTWidth - 1)
            };
            _xq = new Signal <UFix>()
            {
                InitialValue = UFix.FromDouble(0.0, LUTWidth + 1, XFracWidth - LUTWidth - 1)
            };
            _sinRaw = new Signal <SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _cosRaw = new Signal <SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _sinIn = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            _cosIn = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            _sinOut = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            _cosOut = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            AddrWidth = lutWidth + 1;
            _sinAddr  = new Signal <Unsigned>()
            {
                InitialValue = Unsigned.FromUInt(0, AddrWidth)
            };
            _cosAddr = new Signal <Unsigned>()
            {
                InitialValue = Unsigned.FromUInt(0, AddrWidth)
            };
            _sinData = new Signal <SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _cosData = new Signal <SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _sinLUT = new VSignal <SFix>((1 << lutWidth) + 2, _ => new Signal <SFix>()
            {
                InitialValue = SFix.FromDouble(Math.Sin(Math.PI * 0.5 * _ / (double)(1 << lutWidth)), 2, yFracWidth)
            });
            _sinFlipSignIn = new SLVSignal(1)
            {
                InitialValue = "0"
            };
            _cosFlipSignIn = new SLVSignal(1)
            {
                InitialValue = "0"
            };
            _sinFlipSignOut = new SLVSignal(1)
            {
                InitialValue = "0"
            };
            _cosFlipSignOut = new SLVSignal(1)
            {
                InitialValue = "0"
            };

            _mirror  = UFix.FromUnsigned(Unsigned.One.Resize(XFracWidth + 2) << (xFracWidth + 1), xFracWidth - LUTWidth);
            _mirror2 = UFix.FromUnsigned(Unsigned.One.Resize(XFracWidth + 2) << xFracWidth, xFracWidth - LUTWidth);

            _sinPipe = new RegPipe(pipeStages, YIntWidth + YFracWidth);
            Bind(() => {
                _sinPipe.Clk  = Clk;
                _sinPipe.Din  = _sinIn;
                _sinPipe.Dout = _sinOut;
            });

            _cosPipe = new RegPipe(pipeStages, YIntWidth + YFracWidth);
            Bind(() => {
                _cosPipe.Clk  = Clk;
                _cosPipe.Din  = _cosIn;
                _cosPipe.Dout = _cosOut;
            });

            _sinFlipSignPipe = new RegPipe(2, 1);
            Bind(() => {
                _sinFlipSignPipe.Clk  = Clk;
                _sinFlipSignPipe.Din  = _sinFlipSignIn;
                _sinFlipSignPipe.Dout = _sinFlipSignOut;
            });

            _cosFlipSignPipe = new RegPipe(2, 1);
            Bind(() => {
                _cosFlipSignPipe.Clk  = Clk;
                _cosFlipSignPipe.Din  = _cosFlipSignIn;
                _cosFlipSignPipe.Dout = _cosFlipSignOut;
            });

            _sinUnit = new LERPUnit(lutWidth + 1, xFracWidth - 1 - lutWidth, YIntWidth, yFracWidth, 0);
            Bind(() =>
            {
                _sinUnit.Clk  = Clk;
                _sinUnit.X    = _x;
                _sinUnit.Y    = _sinRaw;
                _sinUnit.Addr = _sinAddr;
                _sinUnit.Data = _sinData;
            });

            _cosUnit = new LERPUnit(lutWidth + 1, xFracWidth - 1 - lutWidth, YIntWidth, yFracWidth, 0);
            Bind(() =>
            {
                _cosUnit.Clk  = Clk;
                _cosUnit.X    = _xq;
                _cosUnit.Y    = _cosRaw;
                _cosUnit.Addr = _cosAddr;
                _cosUnit.Data = _cosData;
            });

            TASite = new TransactionSite(this);
        }
示例#4
0
 /// <summary>
 /// Constructs a BitDeserializer component
 /// </summary>
 /// <param name="size">The data word length</param>
 public BitDeserializer(int size)
 {
     _size     = size;
     _shiftReg = new VSignal <StdLogic>(size, i => new Signal <StdLogic>());
 }
示例#5
0
        /// <summary>
        /// Constructs a new instance
        /// </summary>
        /// <param name="lutWidth">resolution of data table</param>
        /// <param name="xFracWidth">fractional width of operand</param>
        /// <param name="yFracWidth">fractional width of result</param>
        /// <param name="pipeStages">additional pipeline stages for interpolation computation</param>
        public SinCosLUTCore(int lutWidth, int xFracWidth, int yFracWidth, int pipeStages)
        {
            PipeStages = pipeStages;
            XIntWidth = 2;
            XFracWidth = xFracWidth;
            YIntWidth = 2;
            YFracWidth = yFracWidth;
            DIntWidth = 2;
            DFracWidth = yFracWidth;
            LUTWidth = lutWidth;

            _x = new Signal<UFix>()
            {
                InitialValue = UFix.FromDouble(0.0, LUTWidth + 1, XFracWidth - LUTWidth - 1)
            };
            _xq = new Signal<UFix>()
            {
                InitialValue = UFix.FromDouble(0.0, LUTWidth + 1, XFracWidth - LUTWidth - 1)
            };
            _sinRaw = new Signal<SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _cosRaw = new Signal<SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _sinIn = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            _cosIn = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            _sinOut = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            _cosOut = new SLVSignal(YIntWidth + YFracWidth)
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth).SLVValue
            };
            AddrWidth = lutWidth + 1;
            _sinAddr = new Signal<Unsigned>()
            {
                InitialValue = Unsigned.FromUInt(0, AddrWidth)
            };
            _cosAddr = new Signal<Unsigned>()
            {
                InitialValue = Unsigned.FromUInt(0, AddrWidth)
            };
            _sinData = new Signal<SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _cosData = new Signal<SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, YIntWidth, YFracWidth)
            };
            _sinLUT = new VSignal<SFix>((1 << lutWidth) + 2, _ => new Signal<SFix>() 
            { 
                InitialValue = SFix.FromDouble(Math.Sin(Math.PI * 0.5 * _ / (double)(1 << lutWidth)), 2, yFracWidth) 
            });
            _sinFlipSignIn = new SLVSignal(1)
            {
                InitialValue = "0"
            };
            _cosFlipSignIn = new SLVSignal(1)
            {
                InitialValue = "0"
            };
            _sinFlipSignOut = new SLVSignal(1)
            {
                InitialValue = "0"
            };
            _cosFlipSignOut = new SLVSignal(1)
            {
                InitialValue = "0"
            };

            _mirror = UFix.FromUnsigned(Unsigned.One.Resize(XFracWidth + 2) << (xFracWidth + 1), xFracWidth - LUTWidth);
            _mirror2 = UFix.FromUnsigned(Unsigned.One.Resize(XFracWidth + 2) << xFracWidth, xFracWidth - LUTWidth);

            _sinPipe = new RegPipe(pipeStages, YIntWidth + YFracWidth);
            Bind(() => {
                _sinPipe.Clk = Clk;
                _sinPipe.Din = _sinIn;
                _sinPipe.Dout = _sinOut;
            });

            _cosPipe = new RegPipe(pipeStages, YIntWidth + YFracWidth);
            Bind(() => {
                _cosPipe.Clk = Clk;
                _cosPipe.Din = _cosIn;
                _cosPipe.Dout = _cosOut;
            });

            _sinFlipSignPipe = new RegPipe(2, 1);
            Bind(() => {
                _sinFlipSignPipe.Clk = Clk;
                _sinFlipSignPipe.Din = _sinFlipSignIn;
                _sinFlipSignPipe.Dout = _sinFlipSignOut;
            });

            _cosFlipSignPipe = new RegPipe(2, 1);
            Bind(() => {
                _cosFlipSignPipe.Clk = Clk;
                _cosFlipSignPipe.Din = _cosFlipSignIn;
                _cosFlipSignPipe.Dout = _cosFlipSignOut;
            });

            _sinUnit = new LERPUnit(lutWidth + 1, xFracWidth - 1 - lutWidth, YIntWidth, yFracWidth, 0);
            Bind(() =>
            {
                _sinUnit.Clk = Clk;
                _sinUnit.X = _x;
                _sinUnit.Y = _sinRaw;
                _sinUnit.Addr = _sinAddr;
                _sinUnit.Data = _sinData;
            });

            _cosUnit = new LERPUnit(lutWidth + 1, xFracWidth - 1 - lutWidth, YIntWidth, yFracWidth, 0);
            Bind(() =>
            {
                _cosUnit.Clk = Clk;
                _cosUnit.X = _xq;
                _cosUnit.Y = _cosRaw;
                _cosUnit.Addr = _cosAddr;
                _cosUnit.Data = _cosData;
            });

            TASite = new TransactionSite(this);
        }
示例#6
0
        /// <summary>
        /// Constructs a new instance.
        /// </summary>
        /// <param name="xIntWidth">integer bits of operand</param>
        /// <param name="xFracWidth">fractional bits of operand</param>
        /// <param name="yIntWidth">integer bits of result</param>
        /// <param name="yFracWidth">fractional bits of result</param>
        /// <param name="pipeStages">desired computation-only latency</param>
        /// <param name="data">data table</param>
        public LERP11Core(int xIntWidth, int xFracWidth, int yIntWidth, int yFracWidth, int pipeStages,
            SFix[] data)
        {
            Contract.Requires<ArgumentOutOfRangeException>(xIntWidth > 0, "xIntWidth must be positive.");
            Contract.Requires<ArgumentOutOfRangeException>(xFracWidth >= 0, "xFracWidth must be non-negative.");
            Contract.Requires<ArgumentOutOfRangeException>(yIntWidth + yFracWidth > 0, "total bit-width of result must be positive");
            Contract.Requires<ArgumentOutOfRangeException>(pipeStages >= 0, "pipeStages must be non-negative.");
            Contract.Requires<ArgumentOutOfRangeException>(xFracWidth > 0 || pipeStages == 0, "xFracWidth == 0 is a degenerate case (lookup-only). No additional pipeline stages allowed.");
            Contract.Requires<ArgumentNullException>(data != null, "data");

            PipeStages = pipeStages;
            XIntWidth = xIntWidth;
            XFracWidth = xFracWidth;
            YIntWidth = yIntWidth;
            YFracWidth = yFracWidth;
            DIntWidth = data[0].Format.IntWidth;
            DFracWidth = data[0].Format.FracWidth;

            _x = new Signal<UFix>()
            {
                InitialValue = UFix.FromDouble(0.0, xIntWidth, xFracWidth)
            };
            _y = new Signal<SFix>()
            {
                InitialValue = SFix.FromDouble(0.0, yIntWidth, yFracWidth)
            };
            AddrWidth = MathExt.CeilPow2(data.Length);
            _unitAddr = new Signal<Unsigned>()
            {
                InitialValue = Unsigned.FromUInt(0, AddrWidth)
            };
            _memContent = new VSignal<SFix>(data.Length, _ => new Signal<SFix>() { InitialValue = data[_] });

            _lerpUnit = new LERPUnit(xIntWidth, xFracWidth, yIntWidth, yFracWidth, pipeStages);
            Bind(() =>
            {
                _lerpUnit.Clk = Clk;
                _lerpUnit.X = _x;
                _lerpUnit.Y = _y;
                _lerpUnit.Addr = _unitAddr;
                _lerpUnit.Data = _unitData;
            });
        }