/// <summary> /// The constructor /// </summary> public NNSim() { this.xor_template = new TrainingTemplate(); xor_template.addTrainingRow(new TrainingRow(new List <double> { 0, 0 }, new List <double> { 0 })); xor_template.addTrainingRow(new TrainingRow(new List <double> { 0, 1 }, new List <double> { 1 })); xor_template.addTrainingRow(new TrainingRow(new List <double> { 1, 0 }, new List <double> { 1 })); xor_template.addTrainingRow(new TrainingRow(new List <double> { 1, 1 }, new List <double> { 0 })); this.input1Neuron = new Neuron("input1", 0, 1); this.input2Neuron = new Neuron("input2", 0, 1); this.hidden1Neuron = new Neuron("hidden1", 0, 1); this.hidden2Neuron = new Neuron("hidden2", 0, 1); this.outputNeuron = new Neuron("output", 0, 1); input1Neuron.fireRule = new SigmoidFireRule(); input2Neuron.fireRule = new SigmoidFireRule(); hidden1Neuron.fireRule = new SigmoidFireRule(); hidden1Neuron.fireRule = new SigmoidFireRule(); outputNeuron.fireRule = new SigmoidFireRule(); input1Neuron.addNewInput("network_in_1", 1, 1); input2Neuron.addNewInput("network_in_2", 1, 1); hidden1Neuron.inputs.Add(input1Neuron.output); hidden1Neuron.inputs.Add(input2Neuron.output); hidden2Neuron.inputs.Add(input1Neuron.output); hidden2Neuron.inputs.Add(input2Neuron.output); outputNeuron.inputs.Add(hidden1Neuron.output); outputNeuron.inputs.Add(hidden2Neuron.output); errors = new double[4]; }
private void button1_Click(object sender, EventArgs e) { neuron = new Neuron("AND-Neuron", 0, 2); neuron.addNewInput("input1", 0, 0); neuron.addNewInput("input2", 0, 0); PerceptronNetwork pn = new PerceptronNetwork(neuron); TrainingTemplate andTemplate = new TrainingTemplate("AND Template"); andTemplate.addTrainingRow(new TrainingRow(new List <double> { 0, 0 }, new List <double> { 0 })); andTemplate.addTrainingRow(new TrainingRow(new List <double> { 0, 1 }, new List <double> { 0 })); andTemplate.addTrainingRow(new TrainingRow(new List <double> { 1, 0 }, new List <double> { 0 })); andTemplate.addTrainingRow(new TrainingRow(new List <double> { 1, 1 }, new List <double> { 1 })); TrainingTemplate orTemplate = new TrainingTemplate("OR Template"); orTemplate.addTrainingRow(new TrainingRow(new List <double> { 0, 0 }, new List <double> { 0 })); orTemplate.addTrainingRow(new TrainingRow(new List <double> { 0, 1 }, new List <double> { 1 })); orTemplate.addTrainingRow(new TrainingRow(new List <double> { 1, 0 }, new List <double> { 1 })); orTemplate.addTrainingRow(new TrainingRow(new List <double> { 1, 1 }, new List <double> { 1 })); TrainingTemplate xorTemplate = new TrainingTemplate("XOR Template"); xorTemplate.addTrainingRow(new TrainingRow(new List <double> { 0, 0 }, new List <double> { 0 })); xorTemplate.addTrainingRow(new TrainingRow(new List <double> { 0, 1 }, new List <double> { 1 })); xorTemplate.addTrainingRow(new TrainingRow(new List <double> { 1, 0 }, new List <double> { 1 })); xorTemplate.addTrainingRow(new TrainingRow(new List <double> { 1, 1 }, new List <double> { 0 })); templatesList = new List <TrainingTemplate>(); ErrorHistory errorProg = new ErrorHistory(); double error = pn.train(xorTemplate, 100, errorProg); labelWeight1.Text = neuron.inputs[0].weight.ToString("N3"); labelWeight2.Text = neuron.inputs[1].weight.ToString("N3"); labelError.Text = error.ToString("N3"); for (int X = 0; X < errorProg.errorPoints.Count; X++) { chart1.Series["Error"].Points.AddXY(X, errorProg.errorPoints[X]); } //chart1.DataBind(errorProg); }
static void Main(string[] args) { //We create the training template TrainingTemplate xor_template = new TrainingTemplate(); xor_template.addTrainingRow(new TrainingRow(new List <double> { 0, 0 }, new List <double> { 0 })); xor_template.addTrainingRow(new TrainingRow(new List <double> { 0, 1 }, new List <double> { 1 })); xor_template.addTrainingRow(new TrainingRow(new List <double> { 1, 0 }, new List <double> { 1 })); xor_template.addTrainingRow(new TrainingRow(new List <double> { 1, 1 }, new List <double> { 0 })); //We create the network SimpleNetwork sn = new SimpleNetwork(); // We create the neurons Neuron input1Neuron = new Neuron("input1", 0, 1); Neuron input2Neuron = new Neuron("input2", 0, 1); Neuron hidden1Neuron = new Neuron("hidden1", 0, 1); Neuron hidden2Neuron = new Neuron("hidden2", 0, 1); Neuron outputNeuron = new Neuron("output", 0, 1); //We asign them Sigmoid fire functions input1Neuron.fireRule = new SigmoidFireRule(); input2Neuron.fireRule = new SigmoidFireRule(); hidden1Neuron.fireRule = new SigmoidFireRule(); hidden1Neuron.fireRule = new SigmoidFireRule(); outputNeuron.fireRule = new SigmoidFireRule(); // We bind them together input1Neuron.addNewInput("network_in_1", 1, 1); input2Neuron.addNewInput("network_in_2", 1, 1); hidden1Neuron.inputs.Add(input1Neuron.output); hidden1Neuron.inputs.Add(input2Neuron.output); hidden2Neuron.inputs.Add(input1Neuron.output); hidden2Neuron.inputs.Add(input2Neuron.output); outputNeuron.inputs.Add(hidden1Neuron.output); // We put them into layers sn.inputLayer.neurons.Add(input1Neuron); sn.inputLayer.neurons.Add(input2Neuron); sn.hiddenLayer.neurons.Add(hidden1Neuron); sn.hiddenLayer.neurons.Add(hidden2Neuron); sn.outputLayer.neurons.Add(outputNeuron); // We train double error = sn.train(xor_template, 5000, new ErrorHistory()); Console.WriteLine(error); Console.ReadKey(); }