示例#1
0
        public void Eval(String start, String expect)
        {
            EncogProgramContext context = new EncogProgramContext();

            StandardExtensions.CreateNumericOperators(context);
            PrgPopulation   pop   = new PrgPopulation(context, 1);
            ICalculateScore score = new ZeroEvalScoreFunction();

            TrainEA genetic = new TrainEA(pop, score);

            genetic.ValidationMode = true;
            genetic.CODEC          = new PrgCODEC();
            genetic.AddOperation(0.95, new SubtreeCrossover());
            genetic.AddOperation(0.05, new SubtreeMutation(context, 4));
            genetic.AddScoreAdjuster(new ComplexityAdjustedScore());
            genetic.Rules.AddRewriteRule(new RewriteConstants());
            genetic.Rules.AddRewriteRule(new RewriteAlgebraic());

            EncogProgram expression = new EncogProgram(context);

            expression.CompileExpression(start);
            RenderCommonExpression render = new RenderCommonExpression();

            genetic.Rules.Rewrite(expression);
            Assert.AreEqual(expect, render.Render(expression));
        }
        /// <summary>
        /// Create an EPL GA trainer.
        /// </summary>
        /// <param name="method">The method to use.</param>
        /// <param name="training">The training data to use.</param>
        /// <param name="argsStr">The arguments to use.</param>
        /// <returns>The newly created trainer.</returns>
        public IMLTrain Create(IMLMethod method,
                               IMLDataSet training, String argsStr)
        {
            PrgPopulation pop = (PrgPopulation)method;

            ICalculateScore score = new TrainingSetScore(training);
            TrainEA         train = new TrainEA(pop, score);

            train.Rules.AddRewriteRule(new RewriteConstants());
            train.Rules.AddRewriteRule(new RewriteAlgebraic());
            train.CODEC = new PrgCODEC();
            train.AddOperation(0.8, new SubtreeCrossover());
            train.AddOperation(0.1, new SubtreeMutation(pop.Context, 4));
            train.AddOperation(0.1, new ConstMutation(pop.Context, 0.5, 1.0));
            train.AddScoreAdjuster(new ComplexityAdjustedScore());
            train.Speciation = new PrgSpeciation();
            return(train);
        }
示例#3
0
        /// <summary>
        /// Program entry point.
        /// </summary>
        /// <param name="app">Holds arguments and other info.</param>
        public void Execute(IExampleInterface app)
        {
            IMLDataSet trainingData = GenerationUtil.GenerateSingleDataRange(
                (x) => (3 * Math.Pow(x, 2) + (12 * x) + 4)
                , 0, 100, 1);

            EncogProgramContext context = new EncogProgramContext();

            context.DefineVariable("x");

            StandardExtensions.CreateNumericOperators(context);

            PrgPopulation pop = new PrgPopulation(context, 1000);

            MultiObjectiveFitness score = new MultiObjectiveFitness();

            score.AddObjective(1.0, new TrainingSetScore(trainingData));

            TrainEA genetic = new TrainEA(pop, score);

            genetic.ValidationMode = true;
            genetic.CODEC          = new PrgCODEC();
            genetic.AddOperation(0.5, new SubtreeCrossover());
            genetic.AddOperation(0.25, new ConstMutation(context, 0.5, 1.0));
            genetic.AddOperation(0.25, new SubtreeMutation(context, 4));
            genetic.AddScoreAdjuster(new ComplexityAdjustedScore(10, 20, 10, 20.0));
            genetic.Rules.AddRewriteRule(new RewriteConstants());
            genetic.Rules.AddRewriteRule(new RewriteAlgebraic());
            genetic.Speciation = new PrgSpeciation();

            (new RampedHalfAndHalf(context, 1, 6)).Generate(new EncogRandom(), pop);

            genetic.ShouldIgnoreExceptions = false;

            EncogProgram best = null;

            genetic.ThreadCount = 1;

            try
            {
                for (int i = 0; i < 1000; i++)
                {
                    genetic.Iteration();
                    best = (EncogProgram)genetic.BestGenome;
                    Console.Out.WriteLine(genetic.IterationNumber + ", Error: "
                                          + best.Score + ",Best Genome Size:" + best.Size
                                          + ",Species Count:" + pop.Species.Count + ",best: " + best.DumpAsCommonExpression());
                }

                //EncogUtility.evaluate(best, trainingData);

                Console.Out.WriteLine("Final score:" + best.Score
                                      + ", effective score:" + best.AdjustedScore);
                Console.Out.WriteLine(best.DumpAsCommonExpression());
                //pop.dumpMembers(Integer.MAX_VALUE);
                //pop.dumpMembers(10);
            }
            catch (Exception t)
            {
                Console.Out.WriteLine(t.ToString());
            }
            finally
            {
                genetic.FinishTraining();
                EncogFramework.Instance.Shutdown();
            }
        }