public void TestDistance3DMedium() { ImageRaster3D <bool> mask = CreateTestMask3D0(); ImageRaster3D <float> distance = new ImageRaster3D <float>(mask.Raster); ToolsDistance.DistanceTransform3DMediumRBA(mask, new float[] { 1.0f, 1.0f, 1.0f }, distance); Assert.AreEqual(0.0f, distance[0]); Assert.AreEqual(1.0f, distance[1]); Assert.AreEqual(ToolsMath.Sqrt(2.0f), distance[2]); Assert.AreEqual(2.0f, distance[3]); Assert.AreEqual(ToolsMath.Sqrt(5.0f), distance[4]); Assert.AreEqual(ToolsMath.Sqrt(8.0f), distance[20]); Assert.AreEqual(ToolsMath.Sqrt(24.0f), distance[120]); Assert.AreEqual(ToolsMath.Sqrt(17.0f), distance[124]); }
public void TestDistance2D() { ImageRaster3D <bool> mask = new ImageRaster3D <bool>(5, 5, 1); mask[0] = true; mask[6] = true; mask[12] = true; mask[13] = true; mask[19] = true; ImageRaster3D <float> distance = ToolsDistance.DistanceTransform3D(mask, new float[] { 1.0f, 1.0f, 1.0f }); Assert.AreEqual(0.0f, distance[0]); Assert.AreEqual(1.0f, distance[1]); Assert.AreEqual(ToolsMath.Sqrt(2.0f), distance[2]); Assert.AreEqual(2.0f, distance[3]); Assert.AreEqual(ToolsMath.Sqrt(5.0f), distance[4]); Assert.AreEqual(ToolsMath.Sqrt(8.0f), distance[20]); }
public void TestDistance2DOosterbroek() { ImageRaster2D <bool> mask = new ImageRaster2D <bool>(5, 5); mask[0] = true; mask[6] = true; mask[12] = true; mask[13] = true; mask[19] = true; ImageRaster2D <float> distance = new ImageRaster2D <float>(mask.Raster); ToolsDistance.DistanceTransform2DOosterbroekRBA(mask, new float[] { 1.0f, 1.0f, 1.0f }, distance); Assert.AreEqual(0.0f, distance[0]); Assert.AreEqual(1.0f, distance[1]); Assert.AreEqual(ToolsMath.Sqrt(2.0f), distance[2]); Assert.AreEqual(2.0f, distance[3]); Assert.AreEqual(ToolsMath.Sqrt(5.0f), distance[4]); Assert.AreEqual(ToolsMath.Sqrt(8.0f), distance[20]); }
public static void DistanceTransform2DSlowRBA(ImageRaster2D <bool> mask_image, float[] voxel_size, ImageRaster2D <float> distance_image) { IRaster2DInteger raster = mask_image.Raster; int size_0 = mask_image.Raster.Size0; int size_1 = mask_image.Raster.Size1; // Apply the transform in the x-direction //for (int plane_index = 0; plane_index < size_z * size_y; plane_index++) //{ Parallel.For(0, size_0, index_0 => { for (int index_1 = 0; index_1 < size_1; index_1++) { float best_distance = float.MaxValue; if (mask_image.GetElementValue(index_0, index_1)) { best_distance = 0; } else { for (int index_0_1 = 0; index_0_1 < size_0; index_0_1++) { for (int index_1_1 = 0; index_1_1 < size_1; index_1_1++) { if (mask_image.GetElementValue(index_0_1, index_1_1)) { float distance = ToolsMath.Sqrt(ToolsMath.Sqr((index_0_1 - index_0) * voxel_size[0]) + ToolsMath.Sqr((index_1_1 - index_1) * voxel_size[0])); if (distance < best_distance) { best_distance = distance; } } } } } distance_image.SetElementValue(index_0, index_1, best_distance); } }); }
public static void DistanceTransform3DOosterbroekRBA(ImageRaster3D <bool> mask_image, float[] voxel_size, ImageRaster3D <float> distance_image_sqr) { // fetch some initial data IRaster3DInteger raster = mask_image.Raster; int size_0 = mask_image.Raster.Size0; int size_1 = mask_image.Raster.Size1; int size_2 = mask_image.Raster.Size2; float [] locations_0 = new float[size_0]; float [] locations_1 = new float[size_1]; float [] locations_2 = new float[size_2]; Parallel.For(0, size_0, index_0 => { locations_0[index_0] = index_0 * voxel_size[0]; }); Parallel.For(0, size_1, index_1 => { locations_1[index_1] = index_1 * voxel_size[1]; }); Parallel.For(0, size_2, index_2 => { locations_2[index_2] = index_2 * voxel_size[2]; }); //Initials pass for zeros and infs Parallel.For(0, distance_image_sqr.ElementCount, element_index => { if (mask_image[element_index]) { distance_image_sqr[element_index] = 0; } else { distance_image_sqr[element_index] = float.PositiveInfinity; } }); // Apply the transform in the x-direction Parallel.For(0, size_2 * size_1, plane_index => { int index_1 = plane_index % size_1; int index_2 = plane_index / size_1; float[] start = new float[size_0]; float[] locations = new float[size_0]; float[] offsets = new float[size_0]; int curve_index = -1; //Curve pass for (int index_0 = 0; index_0 < size_0; index_0++) { curve_index = ComputeCurves(distance_image_sqr, index_0, index_1, index_2, index_0, locations_0, start, locations, offsets, curve_index); } if (curve_index != -1) { //if index == -1 then no curves were build and all are positive infinity for (int index_0 = size_0 - 1; index_0 >= 0; index_0--) { // Compute pass (backwards) curve_index = ComputeDistance(distance_image_sqr, index_0, index_1, index_2, index_0, locations_0, start, locations, offsets, curve_index); } } }); // Apply the transform in the y-direction Parallel.For(0, size_2 * size_0, plane_index => { int index_0 = plane_index % size_0; int index_2 = plane_index / size_0; float[] start = new float[size_1]; float[] locations = new float[size_1]; float[] offsets = new float[size_1]; int curve_index = -1; //Curve pass for (int index_1 = 0; index_1 < size_1; index_1++) { curve_index = ComputeCurves(distance_image_sqr, index_0, index_1, index_2, index_1, locations_1, start, locations, offsets, curve_index); } if (curve_index != -1) { //if index == -1 then no curves were build and all are positive infinity for (int index_1 = size_1 - 1; index_1 >= 0; index_1--) { // Compute pass (backwards) curve_index = ComputeDistance(distance_image_sqr, index_0, index_1, index_2, index_1, locations_1, start, locations, offsets, curve_index); } } }); // Apply the transform in the z-direction. */ Parallel.For(0, size_1 * size_0, plane_index => { int index_0 = plane_index % size_0; int index_1 = plane_index / size_0; float[] start = new float[size_2]; float[] locations = new float[size_2]; float[] offsets = new float[size_2]; int curve_index = -1; //Curve pass for (int index_2 = 0; index_2 < size_2; index_2++) { curve_index = ComputeCurves(distance_image_sqr, index_0, index_1, index_2, index_2, locations_2, start, locations, offsets, curve_index); } if (curve_index != -1) { //if index == -1 then no curves were build and all are positive infinity // Compute pass (backwards) for (int index_2 = size_2 - 1; index_2 >= 0; index_2--) { // Compute pass (backwards) curve_index = ComputeDistance(distance_image_sqr, index_0, index_1, index_2, index_2, locations_2, start, locations, offsets, curve_index); } } }); //Faniak pass for rooting Parallel.For(0, distance_image_sqr.ElementCount, element_index => { distance_image_sqr[element_index] = ToolsMath.Sqrt(distance_image_sqr[element_index]); }); }
//public static void DistanceTransformRBA(ImageRaster3D<bool> mask_image, ImageRaster3D<float> distance_image, float[] voxel_size) //{ // int size_x = mask_image.Raster.SizeX; // int size_y = mask_image.Raster.SizeY; // int size_z = mask_image.Raster.SizeZ; // /* Apply the transform in the x-direction. */ // Parallel.For(0, size_z * size_y, plane_index => // { // int z_index = plane_index / size_y; // int y_index = plane_index - z_index * size_y; // int element_index = size_x * ((size_y * z_index) + y_index); // /* Project distances forward. */ // float distance = float.MaxValue; // for (int x_index = 0; x_index < size_x; x_index++) // { // distance += voxel_size[0]; // /* The voxel value is true; the distance should be 0. */ // if (mask_image[element_index + x_index]) // { // distance = 0.0f; // } // distance_image[element_index + x_index] = distance; // } // /* Project distances backward. From this point on we don't have to // * read the source data anymore, since all object voxels now have a // * distance assigned. */ // distance = float.MaxValue; // for (int x_index = size_x - 1; x_index >= 0; x_index--) // { // distance += voxel_size[0]; // /* The voxel value is 0; the distance should be 0 too. */ // if (distance_image[element_index + x_index] == 0.0f) // { // distance = 0.0f; // } // /* Calculate the shortest distance in the row. */ // distance_image[element_index + x_index] = Math.Min(distance_image[element_index + x_index], distance); // } // }); // /* Apply the transform in the y-direction. */ // float size_1_sqr = ToolsMath.Sqr(voxel_size[1]); // float size_1_inv = 1.0f / voxel_size[1]; // Parallel.For(0, size_z * size_x, plane_index => // { // int z_index = plane_index / size_x; // int x_index = plane_index - z_index * size_x; // int element_index = z_index * size_y * size_x + x_index; // float[] temp_1 = new float[size_y]; // /* Copy the column and square the distances. */ // for (int y_index = 0; y_index < size_y; y_index++) // { // temp_1[y_index] = ToolsMath.Sqr(distance_image[element_index + y_index * size_x]); // } // /* Calculate the smallest squared distance in 2D. */ // for (int y_index = 0; y_index < size_y; y_index++) // { // /* Calculate the smallest search range, i.e. y-im to y+im. */ // float distance = temp_1[y_index]; // if (distance == 0) // { // continue; // } // int im = (int)(size_1_inv * ToolsMath.Sqrt(distance)); // if (im == 0) // { // continue; // } // for (int j = Math.Max(0, y_index - im); j < Math.Min(size_y, y_index + im); j++) // { // if (temp_1[j] < distance) distance = Math.Min(distance, temp_1[j] + size_1_sqr * ToolsMath.Sqr(j - y_index)); // } // distance_image[element_index + y_index * size_x] = distance; // } // }); // /* Apply the transform in the z-direction. */ // float size_2_sqr = ToolsMath.Sqr(voxel_size[2]); // float size_2_inv = 1.0f / voxel_size[2]; // Parallel.For(0, size_y * size_x, plane_index => // { // float[] temp_2 = new float[size_z]; // int y_index = plane_index / size_x; // int x_index = plane_index - (y_index * size_x); // int element_index = y_index * size_x + x_index; // /* Copy the column. */ // for (int z_index = 0; z_index < size_z; z_index++) // { // temp_2[z_index] = distance_image[element_index + z_index * size_y * size_x]; // } // /* Calculate the smallest squared distance in 3D. */ // for (int z_index = 0; z_index < size_z; z_index++) // { // /* Calculate smallest search range, i.e. z-im to z+im. */ // float distance = temp_2[z_index]; // if (distance == 0) // { // continue; // } // int im = (int)(size_2_inv * ToolsMath.Sqrt(distance)); // if (im == 0) // { // continue; // } // for (int j = Math.Max(0, z_index - im); j < Math.Min(size_z, z_index + im); j++) // { // if (temp_2[j] < distance) distance = Math.Min(distance, temp_2[j] + size_2_sqr * ToolsMath.Sqr(j - z_index)); // } // distance_image[element_index + z_index * size_x * size_y] = distance; // } // }); //} public static void DistanceTransform3DMediumRBA(ImageRaster3D <bool> mask_image, float[] voxel_size, ImageRaster3D <float> distance_image) { IRaster3DInteger raster = mask_image.Raster; int size_0 = mask_image.Raster.Size0; int size_1 = mask_image.Raster.Size1; int size_2 = mask_image.Raster.Size2; float[] locations_0 = new float[size_0]; float[] locations_1 = new float[size_1]; float[] locations_2 = new float[size_2]; Parallel.For(0, size_0, index_0 => { locations_0[index_0] = index_0 * voxel_size[0]; }); Parallel.For(0, size_1, index_1 => { locations_1[index_1] = index_1 * voxel_size[1]; }); Parallel.For(0, size_2, index_2 => { locations_2[index_2] = index_2 * voxel_size[2]; }); // Apply the transform in the x-direction //for (int plane_index = 0; plane_index < size_z * size_y; plane_index++) //{ Parallel.For(0, size_2 * size_1, plane_index => { int index_2 = plane_index / size_1; int index_1 = plane_index % size_1; // Upwards pass float added_distance = float.PositiveInfinity; for (int index_0 = 0; index_0 < size_0; index_0++) { int element_index = raster.GetElementIndex(index_0, index_1, index_2); added_distance += voxel_size[0]; /* The voxel value is true; the distance should be 0. */ if (mask_image[element_index]) { added_distance = 0.0f; } distance_image[element_index] = ToolsMath.Sqr(added_distance); } if (distance_image.GetElementValue(size_0 - 1, index_1, index_2) < float.PositiveInfinity) { // Downwards pass added_distance = float.PositiveInfinity; for (int index_0 = size_0 - 1; index_0 >= 0; index_0--) { int element_index = raster.GetElementIndex(index_0, index_1, index_2); added_distance += voxel_size[0]; /* The voxel value is 0; the distance should be 0 too. */ if (distance_image[element_index] == 0.0f) { added_distance = 0.0f; } /* Calculate the shortest distance in the row. */ distance_image[element_index] = Math.Min(distance_image[element_index], ToolsMath.Sqr(added_distance)); } } }); // Apply the transform in the y-direction //for (int plane_index = 0; plane_index < size_0 * size_2; plane_index++) //{ Parallel.For(0, size_2 * size_0, plane_index => { int index_0 = plane_index % size_0; int index_2 = plane_index / size_0; float[] temp_1 = new float[size_1]; for (int index_1 = 0; index_1 < size_1; index_1++) { temp_1[index_1] = distance_image.GetElementValue(index_0, index_1, index_2); } // Upwards pass for (int index_1 = 0; index_1 < size_1; index_1++) { int element_index = raster.GetElementIndex(index_0, index_1, index_2); for (int index_1_inner = index_1 + 1; index_1_inner < size_1; index_1_inner++) { if (distance_image.GetElementValue(index_0, index_1_inner, index_2) <= distance_image[element_index]) { break; } float distance = distance_image[element_index] + ToolsMath.Sqr((index_1_inner - index_1) * voxel_size[1]); if (distance < temp_1[index_1_inner]) { temp_1[index_1_inner] = distance; } } } //Downwards pass for (int index_1 = size_1 - 1; index_1 >= 0; index_1--) { int element_index = raster.GetElementIndex(index_0, index_1, index_2); for (int index_1_inner = index_1 - 1; index_1_inner >= 0; index_1_inner--) { if (distance_image.GetElementValue(index_0, index_1_inner, index_2) <= distance_image[element_index]) { break; } float distance = distance_image[element_index] + ToolsMath.Sqr((index_1 - index_1_inner) * voxel_size[1]); if (distance < temp_1[index_1_inner]) { temp_1[index_1_inner] = distance; } } } for (int index_1 = 0; index_1 < size_1; index_1++) { distance_image.SetElementValue(index_0, index_1, index_2, temp_1[index_1]); } }); // Apply the transform in the z-direction. */ //for (int plane_index = 0; plane_index < size_x * size_y; plane_index++) //{ Parallel.For(0, size_1 * size_0, plane_index => { int index_0 = plane_index % size_0; int index_1 = plane_index / size_0; float[] temp_2 = new float[size_2]; for (int index_2 = 0; index_2 < size_2; index_2++) { temp_2[index_2] = distance_image.GetElementValue(index_0, index_1, index_2); } // Upwards_pass for (int index_2 = 0; index_2 < size_2; index_2++) { int element_index = raster.GetElementIndex(index_0, index_1, index_2); for (int index_2_inner = index_2 + 1; index_2_inner < size_2; index_2_inner++) { if (distance_image.GetElementValue(index_0, index_1, index_2_inner) <= distance_image[element_index]) { break; } float distance = distance_image[element_index] + ToolsMath.Sqr((index_2_inner - index_2) * voxel_size[2]); if (distance < temp_2[index_2_inner]) { temp_2[index_2_inner] = distance; } } } // Downwards pass for (int index_2 = size_2 - 1; index_2 >= 0; index_2--) { int element_index = raster.GetElementIndex(index_0, index_1, index_2); for (int index_2_inner = index_2 - 1; index_2_inner >= 0; index_2_inner--) { if (distance_image.GetElementValue(index_0, index_1, index_2_inner) <= distance_image[element_index]) { break; } float distance = distance_image[element_index] + ToolsMath.Sqr((index_2 - index_2_inner) * voxel_size[2]); if (distance < temp_2[index_2_inner]) { temp_2[index_2_inner] = distance; } } } //Fill and root for (int index_2 = 0; index_2 < size_2; index_2++) { distance_image.SetElementValue(index_0, index_1, index_2, ToolsMath.Sqrt(temp_2[index_2])); } }); }