示例#1
0
    public void SetupSunflow(SunflowAPI a)
    {
        a.parameter("threads", Environment.ProcessorCount);
        //          parameter ("threads", 1);
        a.options(SunflowAPI.DEFAULT_OPTIONS);
        //The render's resolution. 1920 by 1080 is full HD.
        int resolutionX = 3840;
        int resolutionY = 1920;

        //      resolutionX = 1920;
        //    resolutionY = 1920;

        resolutionX = 384 * 4;
        resolutionY = 192 * 4;
//		      int resolutionX = 3840;
//		      int resolutionY = 960;
        a.parameter("resolutionX", resolutionX);
        a.parameter("resolutionY", resolutionY);

        //The anti-aliasing. Negative is subsampling and positive is supersampling.
        a.parameter("aa.min", 1);
        a.parameter("aa.max", 2);

        //Number of samples.
        a.parameter("aa.samples", 1);

        //The contrast needed to increase anti-aliasing.
        a.parameter("aa.contrast", .016f);

        //Subpixel jitter.
        a.parameter("aa.jitter", true);

        //The filter.
        a.parameter("filter", "mitchell");
        a.options(SunflowAPI.DEFAULT_OPTIONS);



//				Point3 eye = new Point3(7.0f, -7.0f, -7.0f);
//				Point3 target = new Point3(0.0f, -7.0f, 0.0f);


        Point3  target = new Point3(7.0f, -7.0f, -7.0f);
        Point3  eye    = new Point3(-6.0f, -10.0f, 2.0f);
        Vector3 up     = new Vector3(0, 1, 0);

        a.parameter("transform", Matrix4.lookAt(eye, target, up));

        String name = "Camera";


        /*     thinlens camera */

        /*
         *      //Aspect Ratio.
         *      float aspect = ((float)resolutionX) / ((float)resolutionY);
         *      a.parameter("aspect", aspect);
         *      a.camera(name, "thinlens");
         */

        /* 360 3D VR camera */

        /*
         *
         *      a.parameter("lens.eyegap", 0.5f);
         * //		a.camera(name, "spherical3d");
         *
         *      a.camera(name, "spherical1803d");
         *
         *
         */
        a.parameter("lens.eyegap", 0.1f);
        a.camera(name, "vr180fisheye");


        a.parameter("camera", name);
        a.options(SunflowAPI.DEFAULT_OPTIONS);

        //Trace depths. Higher numbers look better.
        a.parameter("depths.diffuse", 3);
        a.parameter("depths.reflection", 2);
        a.parameter("depths.refraction", 2);
        a.options(SunflowAPI.DEFAULT_OPTIONS);

        //Setting up the shader for the ground.
        a.parameter("diffuse", null, 0.4f, 0.4f, 0.4f);
        a.parameter("shiny", .1f);
        a.shader("ground", "shiny_diffuse");
        a.options(SunflowAPI.DEFAULT_OPTIONS);

        //Setting up the shader for the big metal sphere.
        a.parameter("diffuse", null, 0.3f, 0.3f, 0.3f);
        a.parameter("shiny", .95f);
        a.shader("metal", "shiny_diffuse");
        a.options(SunflowAPI.DEFAULT_OPTIONS);


        //Setting up the shader for the cube of spheres.
        a.parameter("diffuse", null, 1.0f, 0.0f, 0.0f);
        a.shader("sps", "diffuse");
        a.options(SunflowAPI.DEFAULT_OPTIONS);

        //Instancing the floor.
        a.parameter("center", new Point3(0, -14.2f, 0));
        a.parameter("normal", new Vector3(0, 1, 0));
        a.geometry("floor", "plane");
        a.parameter("shaders", "ground");
        a.instance("FloorInstance", "floor");
        a.options(SunflowAPI.DEFAULT_OPTIONS);

        //Creating the lighting system with the sun and sky.
        a.parameter("up", new Vector3(0, 1, 0));
        a.parameter("east", new Vector3(1, 0, 0));
        //            double sunRad = (Math.PI * 1.05);
        //          a.parameter("sundir", new Vector3((float)Math.Cos(sunRad), (float)Math.Sin(sunRad), (float)(.5 * Math.Sin(sunRad))).normalize());
        a.parameter("sundir", new Vector3(0.8f, 0.8f, 0.5f).normalize());
        a.parameter("turbidity", 4f);
        a.parameter("samples", 128);
        a.light("sunsky", "sunsky");
        a.options(SunflowAPI.DEFAULT_OPTIONS);
    }
示例#2
0
 private void parseCamera(SunflowAPI api)
 {
     p.checkNextToken("{");
     p.checkNextToken("type");
     string type = p.getNextToken();
     UI.printInfo(UI.Module.API, "Reading %s camera ...", type);
     parseCameraTransform(api);
     string name = api.getUniqueName("camera");
     if (type == "pinhole")
     {
         p.checkNextToken("fov");
         api.parameter("fov", p.getNextFloat());
         p.checkNextToken("aspect");
         api.parameter("aspect", p.getNextFloat());
         api.camera(name, new PinholeLens());
     }
     else if (type == "thinlens")
     {
         p.checkNextToken("fov");
         api.parameter("fov", p.getNextFloat());
         p.checkNextToken("aspect");
         api.parameter("aspect", p.getNextFloat());
         p.checkNextToken("fdist");
         api.parameter("focus.distance", p.getNextFloat());
         p.checkNextToken("lensr");
         api.parameter("lens.radius", p.getNextFloat());
         if (p.peekNextToken("sides"))
             api.parameter("lens.sides", p.getNextInt());
         if (p.peekNextToken("rotation"))
             api.parameter("lens.rotation", p.getNextFloat());
         api.camera(name, new ThinLens());
     }
     else if (type == "spherical")
     {
         // no extra arguments
         api.camera(name, new SphericalLens());
     }
     else if (type == "fisheye")
     {
         // no extra arguments
         api.camera(name, new FisheyeLens());
     }
     else
     {
         UI.printWarning(UI.Module.API, "Unrecognized camera type: {0}", p.getNextToken());
         p.checkNextToken("}");
         return;
     }
     p.checkNextToken("}");
     if (name != null)
     {
         api.parameter("camera", name);
         api.options(SunflowAPI.DEFAULT_OPTIONS);
     }
 }