/// <summary>
        /// Runs the algorithm.
        /// </summary>
        /// <returns>Found paths.</returns>


        public IEnumerable <SortedPath> Execute()
        {
            SortedPath initialPath   = GetInitialShortestPath();
            var        shortestPaths = new List <SortedPath> {
                initialPath
            };

            // Initialize the set to store the potential k-th shortest path
            var shortestPathCandidates = new BinaryQueue <SortedPath, double>(GetPathDistance);

            for (int k = 1; k < _k; ++k)
            {
                SortedPath previousPath = shortestPaths[k - 1];

                if (!SearchAndAddKthShortestPath(previousPath, shortestPaths, shortestPathCandidates))
                {
                    break;
                }
            }

            return(_filter(shortestPaths));
        }
 /// <inheritdoc />
 public bool Equals(SortedPath other)
 {
     return(_edges.SequenceEqual(other._edges));
 }
        private bool SearchAndAddKthShortestPath(
            SortedPath previousPath,
            List <SortedPath> shortestPaths,
            IQueue <SortedPath> shortestPathCandidates)
        {
            // Iterate over all of the nodes in the (k-1)st shortest path except for the target node
            // For each node (up to) one new candidate path is generated by temporarily modifying
            // the graph and then running Dijkstra's algorithm to find the shortest path between
            // the node and the target in the modified graph
            for (int i = 0; i < previousPath.Count; ++i)
            {
                // Spur node is retrieved from the previous k-shortest path = currently visited vertex in the previous path
                TVertex spurVertex = previousPath.GetVertex(i);

                // The sequence of nodes from the source to the spur node of the previous k-shortest path
                EquatableTaggedEdge <TVertex, double>[] rootPath = previousPath.GetEdges(i);

                foreach (SortedPath path in shortestPaths)
                {
                    if (rootPath.SequenceEqual(path.GetEdges(i)))
                    {
                        // Remove the links that are part of the previous shortest paths which share the same root path
                        EquatableTaggedEdge <TVertex, double> edgeToRemove = path.GetEdge(i);
                        _edgesToRestore.Add(edgeToRemove);
                        _graph.RemoveEdge(edgeToRemove);
                    }
                }

                var verticesToRestore = new List <TVertex>();
                foreach (EquatableTaggedEdge <TVertex, double> rootPathEdge in rootPath)
                {
                    TVertex source = rootPathEdge.Source;
                    if (!EqualityComparer <TVertex> .Default.Equals(spurVertex, source))
                    {
                        verticesToRestore.Add(source);

                        _graph.EdgeRemoved += OnGraphEdgeRemoved;
                        _graph.RemoveVertex(source);
                        _graph.EdgeRemoved -= OnGraphEdgeRemoved;
                    }
                }

                SortedPath?spurPath = GetShortestPathInGraph(_graph, spurVertex, _targetVertex);
                if (spurPath.HasValue)
                {
                    // Entire path is made up of the root path and spur path
                    var totalPath = new SortedPath(previousPath.GetEdges(i).Concat(spurPath.Value));

                    // Add the potential k-shortest path to the heap
                    if (!shortestPathCandidates.Contains(totalPath))
                    {
                        shortestPathCandidates.Enqueue(totalPath);
                    }
                }

                // Add back the edges and nodes that were removed from the graph
                _graph.AddVertexRange(verticesToRestore);
                _graph.AddEdgeRange(_edgesToRestore);
                _edgesToRestore.Clear();
            }

            // Identify the candidate path with the shortest cost
            SortedPath?newPath = ExtractShortestPathCandidate(shortestPaths, shortestPathCandidates);

            if (newPath is null)
            {
                // This handles the case of there being no spur paths, or no spur paths left.
                // This could happen if the spur paths have already been exhausted (added to A),
                // or there are no spur paths at all - such as when both the source and sink vertices
                // lie along a "dead end".
                return(false);
            }

            // Add the best, non-duplicate candidate identified as the k shortest path
            shortestPaths.Add(newPath.Value);
            return(true);
        }
 private double GetPathDistance(SortedPath edges)
 {
     return(edges.Sum(edge => _weights(edge)));
 }