private static SimpleMatrix ComputeTensorDeltaDown(SimpleMatrix deltaFull, SimpleMatrix leftVector, SimpleMatrix rightVector, SimpleMatrix W, SimpleTensor Wt)
        {
            SimpleMatrix WTDelta       = W.Transpose().Mult(deltaFull);
            SimpleMatrix WTDeltaNoBias = WTDelta.ExtractMatrix(0, deltaFull.NumRows() * 2, 0, 1);
            int          size          = deltaFull.GetNumElements();
            SimpleMatrix deltaTensor   = new SimpleMatrix(size * 2, 1);
            SimpleMatrix fullVector    = NeuralUtils.Concatenate(leftVector, rightVector);

            for (int slice = 0; slice < size; ++slice)
            {
                SimpleMatrix scaledFullVector = fullVector.Scale(deltaFull.Get(slice));
                deltaTensor = deltaTensor.Plus(Wt.GetSlice(slice).Plus(Wt.GetSlice(slice).Transpose()).Mult(scaledFullVector));
            }
            return(deltaTensor.Plus(WTDeltaNoBias));
        }
示例#2
0
        /// <exception cref="System.IO.IOException"/>
        public static void Main(string[] args)
        {
            string basePath         = "/user/socherr/scr/projects/semComp/RNTN/src/params/";
            int    numSlices        = 25;
            bool   useEscapedParens = false;

            for (int argIndex = 0; argIndex < args.Length;)
            {
                if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-slices"))
                {
                    numSlices = System.Convert.ToInt32(args[argIndex + 1]);
                    argIndex += 2;
                }
                else
                {
                    if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-path"))
                    {
                        basePath  = args[argIndex + 1];
                        argIndex += 2;
                    }
                    else
                    {
                        if (Sharpen.Runtime.EqualsIgnoreCase(args[argIndex], "-useEscapedParens"))
                        {
                            useEscapedParens = true;
                            argIndex        += 1;
                        }
                        else
                        {
                            log.Info("Unknown argument " + args[argIndex]);
                            System.Environment.Exit(2);
                        }
                    }
                }
            }
            SimpleMatrix[] slices = new SimpleMatrix[numSlices];
            for (int i = 0; i < numSlices; ++i)
            {
                slices[i] = LoadMatrix(basePath + "bin/Wt_" + (i + 1) + ".bin", basePath + "Wt_" + (i + 1) + ".txt");
            }
            SimpleTensor tensor = new SimpleTensor(slices);

            log.Info("W tensor size: " + tensor.NumRows() + "x" + tensor.NumCols() + "x" + tensor.NumSlices());
            SimpleMatrix W = LoadMatrix(basePath + "bin/W.bin", basePath + "W.txt");

            log.Info("W matrix size: " + W.NumRows() + "x" + W.NumCols());
            SimpleMatrix Wcat = LoadMatrix(basePath + "bin/Wcat.bin", basePath + "Wcat.txt");

            log.Info("W cat size: " + Wcat.NumRows() + "x" + Wcat.NumCols());
            SimpleMatrix combinedWV = LoadMatrix(basePath + "bin/Wv.bin", basePath + "Wv.txt");

            log.Info("Word matrix size: " + combinedWV.NumRows() + "x" + combinedWV.NumCols());
            File vocabFile = new File(basePath + "vocab_1.txt");

            if (!vocabFile.Exists())
            {
                vocabFile = new File(basePath + "words.txt");
            }
            IList <string> lines = Generics.NewArrayList();

            foreach (string line in IOUtils.ReadLines(vocabFile))
            {
                lines.Add(line.Trim());
            }
            log.Info("Lines in vocab file: " + lines.Count);
            IDictionary <string, SimpleMatrix> wordVectors = Generics.NewTreeMap();

            for (int i_1 = 0; i_1 < lines.Count && i_1 < combinedWV.NumCols(); ++i_1)
            {
                string[] pieces = lines[i_1].Split(" +");
                if (pieces.Length == 0 || pieces.Length > 1)
                {
                    continue;
                }
                wordVectors[pieces[0]] = combinedWV.ExtractMatrix(0, numSlices, i_1, i_1 + 1);
                if (pieces[0].Equals("UNK"))
                {
                    wordVectors[SentimentModel.UnknownWord] = wordVectors["UNK"];
                }
            }
            // If there is no ",", we first try to look for an HTML escaping,
            // then fall back to "." as better than just a random word vector.
            // Same for "``" and ";"
            CopyWordVector(wordVectors, "&#44", ",");
            CopyWordVector(wordVectors, ".", ",");
            CopyWordVector(wordVectors, "&#59", ";");
            CopyWordVector(wordVectors, ".", ";");
            CopyWordVector(wordVectors, "&#96&#96", "``");
            CopyWordVector(wordVectors, "''", "``");
            if (useEscapedParens)
            {
                ReplaceWordVector(wordVectors, "(", "-LRB-");
                ReplaceWordVector(wordVectors, ")", "-RRB-");
            }
            RNNOptions op = new RNNOptions();

            op.numHid = numSlices;
            op.lowercaseWordVectors = false;
            if (Wcat.NumRows() == 2)
            {
                op.classNames         = new string[] { "Negative", "Positive" };
                op.equivalenceClasses = new int[][] { new int[] { 0 }, new int[] { 1 } };
                // TODO: set to null once old models are updated
                op.numClasses = 2;
            }
            if (!wordVectors.Contains(SentimentModel.UnknownWord))
            {
                wordVectors[SentimentModel.UnknownWord] = SimpleMatrix.Random(numSlices, 1, -0.00001, 0.00001, new Random());
            }
            SentimentModel model = SentimentModel.ModelFromMatrices(W, Wcat, tensor, wordVectors, op);

            model.SaveSerialized("matlab.ser.gz");
        }
        private void BackpropDerivativesAndError(Tree tree, TwoDimensionalMap <string, string, SimpleMatrix> binaryTD, TwoDimensionalMap <string, string, SimpleMatrix> binaryCD, TwoDimensionalMap <string, string, SimpleTensor> binaryTensorTD, IDictionary
                                                 <string, SimpleMatrix> unaryCD, IDictionary <string, SimpleMatrix> wordVectorD, SimpleMatrix deltaUp)
        {
            if (tree.IsLeaf())
            {
                return;
            }
            SimpleMatrix currentVector = RNNCoreAnnotations.GetNodeVector(tree);
            string       category      = tree.Label().Value();

            category = model.BasicCategory(category);
            // Build a vector that looks like 0,0,1,0,0 with an indicator for the correct class
            SimpleMatrix goldLabel = new SimpleMatrix(model.numClasses, 1);
            int          goldClass = RNNCoreAnnotations.GetGoldClass(tree);

            if (goldClass >= 0)
            {
                goldLabel.Set(goldClass, 1.0);
            }
            double       nodeWeight  = model.op.trainOptions.GetClassWeight(goldClass);
            SimpleMatrix predictions = RNNCoreAnnotations.GetPredictions(tree);
            // If this is an unlabeled class, set deltaClass to 0.  We could
            // make this more efficient by eliminating various of the below
            // calculations, but this would be the easiest way to handle the
            // unlabeled class
            SimpleMatrix deltaClass = goldClass >= 0 ? predictions.Minus(goldLabel).Scale(nodeWeight) : new SimpleMatrix(predictions.NumRows(), predictions.NumCols());
            SimpleMatrix localCD    = deltaClass.Mult(NeuralUtils.ConcatenateWithBias(currentVector).Transpose());
            double       error      = -(NeuralUtils.ElementwiseApplyLog(predictions).ElementMult(goldLabel).ElementSum());

            error = error * nodeWeight;
            RNNCoreAnnotations.SetPredictionError(tree, error);
            if (tree.IsPreTerminal())
            {
                // below us is a word vector
                unaryCD[category] = unaryCD[category].Plus(localCD);
                string word = tree.Children()[0].Label().Value();
                word = model.GetVocabWord(word);
                //SimpleMatrix currentVectorDerivative = NeuralUtils.elementwiseApplyTanhDerivative(currentVector);
                //SimpleMatrix deltaFromClass = model.getUnaryClassification(category).transpose().mult(deltaClass);
                //SimpleMatrix deltaFull = deltaFromClass.extractMatrix(0, model.op.numHid, 0, 1).plus(deltaUp);
                //SimpleMatrix wordDerivative = deltaFull.elementMult(currentVectorDerivative);
                //wordVectorD.put(word, wordVectorD.get(word).plus(wordDerivative));
                SimpleMatrix currentVectorDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(currentVector);
                SimpleMatrix deltaFromClass          = model.GetUnaryClassification(category).Transpose().Mult(deltaClass);
                deltaFromClass = deltaFromClass.ExtractMatrix(0, model.op.numHid, 0, 1).ElementMult(currentVectorDerivative);
                SimpleMatrix deltaFull      = deltaFromClass.Plus(deltaUp);
                SimpleMatrix oldWordVectorD = wordVectorD[word];
                if (oldWordVectorD == null)
                {
                    wordVectorD[word] = deltaFull;
                }
                else
                {
                    wordVectorD[word] = oldWordVectorD.Plus(deltaFull);
                }
            }
            else
            {
                // Otherwise, this must be a binary node
                string leftCategory  = model.BasicCategory(tree.Children()[0].Label().Value());
                string rightCategory = model.BasicCategory(tree.Children()[1].Label().Value());
                if (model.op.combineClassification)
                {
                    unaryCD[string.Empty] = unaryCD[string.Empty].Plus(localCD);
                }
                else
                {
                    binaryCD.Put(leftCategory, rightCategory, binaryCD.Get(leftCategory, rightCategory).Plus(localCD));
                }
                SimpleMatrix currentVectorDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(currentVector);
                SimpleMatrix deltaFromClass          = model.GetBinaryClassification(leftCategory, rightCategory).Transpose().Mult(deltaClass);
                deltaFromClass = deltaFromClass.ExtractMatrix(0, model.op.numHid, 0, 1).ElementMult(currentVectorDerivative);
                SimpleMatrix deltaFull      = deltaFromClass.Plus(deltaUp);
                SimpleMatrix leftVector     = RNNCoreAnnotations.GetNodeVector(tree.Children()[0]);
                SimpleMatrix rightVector    = RNNCoreAnnotations.GetNodeVector(tree.Children()[1]);
                SimpleMatrix childrenVector = NeuralUtils.ConcatenateWithBias(leftVector, rightVector);
                SimpleMatrix W_df           = deltaFull.Mult(childrenVector.Transpose());
                binaryTD.Put(leftCategory, rightCategory, binaryTD.Get(leftCategory, rightCategory).Plus(W_df));
                SimpleMatrix deltaDown;
                if (model.op.useTensors)
                {
                    SimpleTensor Wt_df = GetTensorGradient(deltaFull, leftVector, rightVector);
                    binaryTensorTD.Put(leftCategory, rightCategory, binaryTensorTD.Get(leftCategory, rightCategory).Plus(Wt_df));
                    deltaDown = ComputeTensorDeltaDown(deltaFull, leftVector, rightVector, model.GetBinaryTransform(leftCategory, rightCategory), model.GetBinaryTensor(leftCategory, rightCategory));
                }
                else
                {
                    deltaDown = model.GetBinaryTransform(leftCategory, rightCategory).Transpose().Mult(deltaFull);
                }
                SimpleMatrix leftDerivative  = NeuralUtils.ElementwiseApplyTanhDerivative(leftVector);
                SimpleMatrix rightDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(rightVector);
                SimpleMatrix leftDeltaDown   = deltaDown.ExtractMatrix(0, deltaFull.NumRows(), 0, 1);
                SimpleMatrix rightDeltaDown  = deltaDown.ExtractMatrix(deltaFull.NumRows(), deltaFull.NumRows() * 2, 0, 1);
                BackpropDerivativesAndError(tree.Children()[0], binaryTD, binaryCD, binaryTensorTD, unaryCD, wordVectorD, leftDerivative.ElementMult(leftDeltaDown));
                BackpropDerivativesAndError(tree.Children()[1], binaryTD, binaryCD, binaryTensorTD, unaryCD, wordVectorD, rightDerivative.ElementMult(rightDeltaDown));
            }
        }
示例#4
0
        public virtual void BackpropDerivative(Tree tree, IList <string> words, IdentityHashMap <Tree, SimpleMatrix> nodeVectors, TwoDimensionalMap <string, string, SimpleMatrix> binaryW_dfs, IDictionary <string, SimpleMatrix> unaryW_dfs, TwoDimensionalMap
                                               <string, string, SimpleMatrix> binaryScoreDerivatives, IDictionary <string, SimpleMatrix> unaryScoreDerivatives, IDictionary <string, SimpleMatrix> wordVectorDerivatives, SimpleMatrix deltaUp)
        {
            if (tree.IsLeaf())
            {
                return;
            }
            if (tree.IsPreTerminal())
            {
                if (op.trainOptions.trainWordVectors)
                {
                    string word = tree.Children()[0].Label().Value();
                    word = dvModel.GetVocabWord(word);
                    //        SimpleMatrix currentVector = nodeVectors.get(tree);
                    //        SimpleMatrix currentVectorDerivative = nonlinearityVectorToDerivative(currentVector);
                    //        SimpleMatrix derivative = deltaUp.elementMult(currentVectorDerivative);
                    SimpleMatrix derivative = deltaUp;
                    wordVectorDerivatives[word] = wordVectorDerivatives[word].Plus(derivative);
                }
                return;
            }
            SimpleMatrix currentVector           = nodeVectors[tree];
            SimpleMatrix currentVectorDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(currentVector);
            SimpleMatrix scoreW = dvModel.GetScoreWForNode(tree);

            currentVectorDerivative = currentVectorDerivative.ElementMult(scoreW.Transpose());
            // the delta that is used at the current nodes
            SimpleMatrix deltaCurrent = deltaUp.Plus(currentVectorDerivative);
            SimpleMatrix W            = dvModel.GetWForNode(tree);
            SimpleMatrix WTdelta      = W.Transpose().Mult(deltaCurrent);

            if (tree.Children().Length == 2)
            {
                //TODO: RS: Change to the nice "getWForNode" setup?
                string leftLabel  = dvModel.BasicCategory(tree.Children()[0].Label().Value());
                string rightLabel = dvModel.BasicCategory(tree.Children()[1].Label().Value());
                binaryScoreDerivatives.Put(leftLabel, rightLabel, binaryScoreDerivatives.Get(leftLabel, rightLabel).Plus(currentVector.Transpose()));
                SimpleMatrix leftVector     = nodeVectors[tree.Children()[0]];
                SimpleMatrix rightVector    = nodeVectors[tree.Children()[1]];
                SimpleMatrix childrenVector = NeuralUtils.ConcatenateWithBias(leftVector, rightVector);
                if (op.trainOptions.useContextWords)
                {
                    childrenVector = ConcatenateContextWords(childrenVector, tree.GetSpan(), words);
                }
                SimpleMatrix W_df = deltaCurrent.Mult(childrenVector.Transpose());
                binaryW_dfs.Put(leftLabel, rightLabel, binaryW_dfs.Get(leftLabel, rightLabel).Plus(W_df));
                // and then recurse
                SimpleMatrix leftDerivative  = NeuralUtils.ElementwiseApplyTanhDerivative(leftVector);
                SimpleMatrix rightDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(rightVector);
                SimpleMatrix leftWTDelta     = WTdelta.ExtractMatrix(0, deltaCurrent.NumRows(), 0, 1);
                SimpleMatrix rightWTDelta    = WTdelta.ExtractMatrix(deltaCurrent.NumRows(), deltaCurrent.NumRows() * 2, 0, 1);
                BackpropDerivative(tree.Children()[0], words, nodeVectors, binaryW_dfs, unaryW_dfs, binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives, leftDerivative.ElementMult(leftWTDelta));
                BackpropDerivative(tree.Children()[1], words, nodeVectors, binaryW_dfs, unaryW_dfs, binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives, rightDerivative.ElementMult(rightWTDelta));
            }
            else
            {
                if (tree.Children().Length == 1)
                {
                    string childLabel = dvModel.BasicCategory(tree.Children()[0].Label().Value());
                    unaryScoreDerivatives[childLabel] = unaryScoreDerivatives[childLabel].Plus(currentVector.Transpose());
                    SimpleMatrix childVector         = nodeVectors[tree.Children()[0]];
                    SimpleMatrix childVectorWithBias = NeuralUtils.ConcatenateWithBias(childVector);
                    if (op.trainOptions.useContextWords)
                    {
                        childVectorWithBias = ConcatenateContextWords(childVectorWithBias, tree.GetSpan(), words);
                    }
                    SimpleMatrix W_df = deltaCurrent.Mult(childVectorWithBias.Transpose());
                    // System.out.println("unary backprop derivative for " + childLabel);
                    // System.out.println("Old transform:");
                    // System.out.println(unaryW_dfs.get(childLabel));
                    // System.out.println(" Delta:");
                    // System.out.println(W_df.scale(scale));
                    unaryW_dfs[childLabel] = unaryW_dfs[childLabel].Plus(W_df);
                    // and then recurse
                    SimpleMatrix childDerivative = NeuralUtils.ElementwiseApplyTanhDerivative(childVector);
                    //SimpleMatrix childDerivative = childVector;
                    SimpleMatrix childWTDelta = WTdelta.ExtractMatrix(0, deltaCurrent.NumRows(), 0, 1);
                    BackpropDerivative(tree.Children()[0], words, nodeVectors, binaryW_dfs, unaryW_dfs, binaryScoreDerivatives, unaryScoreDerivatives, wordVectorDerivatives, childDerivative.ElementMult(childWTDelta));
                }
            }
        }