/// <summary> /// Predict a target using a linear classification model trained with the <see cref="SgdNonCalibratedTrainer"/> trainer. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The name of the label column.</param> /// <param name="features">The name of the feature column.</param> /// <param name="weights">The name for the example weight column.</param> /// <param name="options">Advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> public static (Scalar <float> score, Scalar <bool> predictedLabel) StochasticGradientDescentNonCalibratedClassificationTrainer( this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights, SgdNonCalibratedTrainer.Options options, Action <LinearBinaryModelParameters> onFit = null) { var rec = new TrainerEstimatorReconciler.BinaryClassifierNoCalibration( (env, labelName, featuresName, weightsName) => { options.FeatureColumnName = featuresName; options.LabelColumnName = labelName; options.ExampleWeightColumnName = weightsName; var trainer = new SgdNonCalibratedTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Output); }
/// <summary> /// Predict a target using a linear classification model trained with the <see cref="SgdNonCalibratedTrainer"/> trainer. /// </summary> /// <param name="catalog">The binary classification catalog trainer object.</param> /// <param name="label">The name of the label column.</param> /// <param name="features">The name of the feature column.</param> /// <param name="weights">The name for the example weight column.</param> /// <param name="numberOfIterations">The maximum number of iterations; set to 1 to simulate online learning.</param> /// <param name="learningRate">The initial learning rate used by SGD.</param> /// <param name="l2Regularization">The L2 weight for <a href='https://en.wikipedia.org/wiki/Regularization_(mathematics)'>regularization</a>.</param> /// <param name="lossFunction">The loss function to use.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}.Fit(DataView{TTupleInShape})"/> method is called on the /// <see cref="Estimator{TTupleInShape, TTupleOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained. Note that this action cannot change the result in any way; it is only a way for the caller to /// be informed about what was learnt.</param> /// <returns>The predicted output.</returns> public static (Scalar <float> score, Scalar <bool> predictedLabel) StochasticGradientDescentNonCalibratedClassificationTrainer( this BinaryClassificationCatalog.BinaryClassificationTrainers catalog, Scalar <bool> label, Vector <float> features, Scalar <float> weights = null, int numberOfIterations = SgdNonCalibratedTrainer.Options.Defaults.NumberOfIterations, double learningRate = SgdNonCalibratedTrainer.Options.Defaults.LearningRate, float l2Regularization = SgdNonCalibratedTrainer.Options.Defaults.L2Regularization, IClassificationLoss lossFunction = null, Action <LinearBinaryModelParameters> onFit = null) { var rec = new TrainerEstimatorReconciler.BinaryClassifierNoCalibration( (env, labelName, featuresName, weightsName) => { var trainer = new SgdNonCalibratedTrainer(env, labelName, featuresName, weightsName, numberOfIterations, learningRate, l2Regularization, lossFunction); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Output); }