示例#1
0
        public static void SmallNetwork(List <Tuple <bool, float[]> > train, List <Tuple <bool, float[]> > test)
        {
            int vectorSize = train[0].Item2.Length;
            //Load train data
            var nTrain = ListToNDarrays(train, vectorSize);
            var nTest  = ListToNDarrays(test, vectorSize);

            //Build sequential model
            var model = new Sequential();

            model.Add(new Dense(8, activation: "relu", input_shape: new Shape(vectorSize)));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(16, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(1, activation: "sigmoid"));

            //Compile and train
            //model.Compile(optimizer:"adam", loss:"sparse_categorical_crossentropy", metrics: new string[] { "accuracy" });
            model.Compile(optimizer: "adam", loss: "binary_crossentropy", metrics: new string[] { "accuracy" });
            model.Fit(
                nTrain.Item2,
                nTrain.Item1,
                batch_size: 8,
                epochs: 50,
                verbose: 1,
                validation_data: new NDarray[] { nTest.Item2, nTest.Item1 });

            //Save model and weights
            string json = model.ToJson();

            File.WriteAllText("./models/sm_model.json", json);
            model.SaveWeight("./models/sm_model.h5");
        }
示例#2
0
 public static void BuildModel()
 {
     model = new Sequential(new Shape(10));
     model.Add(new Dense(dim: 20, activation: new Model.Layers.Activations.ReLU()));
     model.Add(new Dense(dim: 20, activation: new Model.Layers.Activations.ReLU()));
     model.Add(new Dense(dim: 1));
 }
示例#3
0
        static void Main(string[] args)
        {
            SaveRateToFileTrainData("USD");
            SaveRateToFileTestData("USD");
            Global.UseEngine(SiaNet.Backend.ArrayFire.SiaNetBackend.Instance, DeviceType.CUDA, true);


            var train = PreparingExchangeRateData.LoadTrain();
            var test  = PreparingExchangeRateData.LoadTest();

            var model = new Sequential();

            model.EpochEnd += Model_EpochEnd;
            model.Add(new Dense(60, ActType.Sigmoid));
            model.Add(new Dense(60, ActType.Sigmoid));
            model.Add(new Dense(1, ActType.Linear));

            //Compile with Optimizer, Loss and Metric
            model.Compile(OptimizerType.SGD, LossType.MeanSquaredError, MetricType.MSE);
            // Train for 1000 epoch with batch size of 2
            model.Train(train, epochs: 1000, batchSize: 32);

            //Create prediction data to evaluate
            DataFrame2D predX = new DataFrame2D(2);

            predX.Load(0, 0, 0, 1, 1, 0, 1, 1); //Result should be 0, 1, 1, 0
            var rawPred = model.Predict(test);

            Console.ReadLine();
        }
 public static void BuildModel()
 {
     model = new Sequential(new Shape(lookback));
     model.Add(new LSTM(dim: 4, returnSequence: true));
     model.Add(new LSTM(dim: 4));
     model.Add(new Dense(dim: 1));
 }
示例#5
0
        public static void FitMnistSimple()
        {
            var model = new Sequential();

            model.Add(new Dense(512, activation: "relu", inputShape: new int[] { 784 }));
            model.Add(new Dropout(0.2));
            model.Add(new Dense(512, activation: "relu"));
            model.Add(new Dropout(0.2));
            model.Add(new Dense(10, activation: "softmax"));

            var optimizer = new SGD(lr: 0.01);

            model.Compile("categorical_crossentropy", optimizer, new string[] { "accuracy" });

            var xtrain = TensorUtils.Deserialize(new FileStream(GetDataPath("datasets/nda_mnist/mnist_xtrain.nda"), FileMode.Open));
            var ytrain = TensorUtils.Deserialize(new FileStream(GetDataPath("datasets/nda_mnist/mnist_ytrain.nda"), FileMode.Open));

            xtrain = xtrain.Cast(DType.Float32);
            xtrain = Ops.Div(null, xtrain, 255f);

            ytrain = ytrain.Cast(DType.Float32);

            model.Fit(xtrain, ytrain, batchSize: 128, epochs: 20);

            var stream = new FileStream("c:/ttt/mnist-simple.model", FileMode.OpenOrCreate, FileAccess.Write);

            stream.SetLength(0);

            model.Save(stream);
        }
示例#6
0
 private static void BuildMLP(int[] imageDim, int numClasses)
 {
     model.Add(new Dense(3072, imageDim[0], OptActivations.ReLU));
     model.Add(new Dense(2000, OptActivations.ReLU));
     model.Add(new Dropout(0.2));
     model.Add(new Dense(numClasses));
 }
示例#7
0
        static void Main(string[] args)
        {
            //Load train data
            NDarray x = np.array(new float[, ] {
                { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 }
            });
            NDarray y = np.array(new float[] { 0, 1, 1, 0 });

            //Build sequential model
            var model = new Sequential();

            model.Add(new Dense(32, activation: "relu", input_shape: new Shape(2)));
            model.Add(new Dense(64, activation: "relu"));
            model.Add(new Dense(1, activation: "sigmoid"));

            //Compile and train
            model.Compile(optimizer: "sgd", loss: "binary_crossentropy", metrics: new string[] { "accuracy" });
            model.Fit(x, y, batch_size: 2, epochs: 1000, verbose: 1);

            //Save model and weights
            string json = model.ToJson();

            File.WriteAllText("model.json", json);
            model.SaveWeight("model.h5");

            //Load model and weight
            var loaded_model = Sequential.ModelFromJson(File.ReadAllText("model.json"));

            loaded_model.LoadWeight("model.h5");

            var result = loaded_model.Predict(x);

            Console.WriteLine("Предсказание для [{0}] = [{1}]", x.ToString(), result.ToString());
        }
示例#8
0
        // Performs convolutional neural network model training:
        // Incorporated parameters include relu and softmax
        // Adds fixed preprocessing layers and pooling: could use further development with exposed parameters
        private static Sequential ProcessCnnModel(Shape input_shape, NDarray x_train, NDarray y_train, NDarray x_test, NDarray y_test,
                                                  int num_classes, string logname, Config config)
        {
            // Build CNN model
            Sequential model = new Sequential();

            model.Add(new Conv2D(16, kernel_size: (3, 3).ToTuple(), activation: "relu", input_shape: input_shape));
            model.Add(new Conv2D(32, (3, 3).ToTuple(), activation: "relu"));
            model.Add(new MaxPooling2D(pool_size: (2, 2).ToTuple()));
            model.Add(new Flatten());

            Callback[] callbacks = GetCallbacks(config.isEarlyStop, logname);

            AddNodes(model, config);

            model.Add(new Dense(num_classes, activation: "softmax"));

            // Compile with loss, metrics and optimizer
            model.Compile(loss: "categorical_crossentropy",
                          optimizer: new Adam(lr: (float)config.LearnRate, decay: (float)config.LearnDecay), metrics: new[] { "accuracy" });

            // Train the model
            model.Fit(x_train, y_train, batch_size: config.Batch, epochs: config.Epochs, verbose: 1,
                      validation_data: new[] { x_test, y_test }, callbacks: callbacks);

            return(model);
        }
示例#9
0
        public void sequential_guide_2()
        {
            var model = new Sequential();

            model.Add(new Dense(32, input_dim: 784));
            model.Add(new Activation("relu"));
        }
            public RNN(uint n_inputs, uint n_mem, uint[] shape, IActivation act)
            {
                n_memory       = n_mem;
                n_outputs      = shape[shape.Length - 1];
                mem_stack      = new float[n_memory, n_outputs + n_inputs];
                flat_mem_stack = Utils.FZerosArray(mem_stack);
                activation     = act;
                //IActivation Tanh = new Tanh();

                h_layers = new Sequential();
                h_layers.Add(new Layer((uint)(n_inputs + flat_mem_stack.Length), shape[0], Activations.Tanh));
                //h_layers[0] = new Layer((uint) (n_inputs + flat_mem_stack.Length), hidden_dim);
                for (int i = 1; i < shape.Length; i++)
                {
                    //h_layers[i] = new Layer(hidden_dim, hidden_dim);
                    h_layers.Add(new Layer(shape[i - 1], shape[i], Activations.Tanh));
                }

                // Setting the output layer activation to the given activation

                Layer lastLayer = (Layer)h_layers.NeuralNetworks[h_layers.NeuralNetworks.Count - 1];

                lastLayer.SetActivation(activation);
                h_layers.NeuralNetworks[h_layers.CountLayer() - 1] = lastLayer;

                this.n_outputs = shape[shape.Length - 1];
            }
示例#11
0
 public static void BuildModel()
 {
     model = new Sequential(new Shape(trainData.Features.DataShape[0]));
     model.Add(new Dense(dim: 20, activation: new SiaNet.Layers.Activations.ReLU()));
     model.Add(new Dense(dim: 20, activation: new SiaNet.Layers.Activations.ReLU()));
     model.Add(new Dense(dim: trainData.Labels.DataShape[0]));
 }
示例#12
0
        public static void Run()
        {
            //Load train data
            NDarray x = np.array(new float[, ] {
                { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 }
            });
            NDarray y = np.array(new float[] { 0, 1, 1, 0 });

            //Build sequential model
            var model = new Sequential();

            model.Add(new Dense(32, activation: "relu", input_shape: new Shape(2)));
            model.Add(new Dense(64, activation: "relu"));
            model.Add(new Dense(1, activation: "sigmoid"));

            //Compile and train
            model.Compile(optimizer: new Adam(), loss: "binary_crossentropy", metrics: new string[] { "accuracy" });
            var history = model.Fit(x, y, batch_size: 2, epochs: 100, verbose: 1);
            var logs    = history.HistoryLogs;
            //Save model and weights
            string json = model.ToJson();

            File.WriteAllText("model.json", json);
            model.SaveWeight("model.h5");

            //Load model and weight
            var loaded_model = Sequential.ModelFromJson(File.ReadAllText("model.json"));

            loaded_model.LoadWeight("model.h5");
        }
示例#13
0
        public void mlp_should_learn_all(
            [ValueSource("Backends")] string backend,
            [ValueSource("Targets")] float[] y,
            [Values(false, true)] bool useBias)
        {
            KerasSharp.Backends.Current.Switch(backend);

            var model = new Sequential();

            model.Add(new Dense(5, input_dim: 2,
                                kernel_initializer: new GlorotUniform(),
                                bias_initializer: new GlorotUniform(),
                                use_bias: useBias,
                                activation: new Sigmoid()));
            model.Add(new Dense(1,
                                kernel_initializer: new GlorotUniform(),
                                bias_initializer: new GlorotUniform(),
                                use_bias: useBias,
                                activation: new Sigmoid()));

            model.Compile(loss: new MeanSquareError(), optimizer: new SGD(lr: 1), metrics: new[] { new Accuracy() });

            model.fit(x, y, epochs: 1000, batch_size: y.Length);

            double[] pred = Matrix.Round(model.predict(x, batch_size: y.Length)[0].To <double[, ]>()).GetColumn(0);

            Assert.AreEqual(y, pred);
        }
示例#14
0
        public void sequential_guide_stateful_stacked_lstm()
        {
            int data_dim    = 16;
            int timesteps   = 8;
            int num_classes = 10;
            int batch_size  = 32;

            // Expected input batch shape: (batch_size, timesteps, data_dim)
            // Note that we have to provide the full batch_input_shape since the network is stateful.
            // the sample of index i in batch k is the follow-up for the sample i in batch k-1.
            var model = new Sequential();

            model.Add(new LSTM(32, return_sequences: true, stateful: true,
                               batch_input_shape: new int?[] { batch_size, timesteps, data_dim }));
            model.Add(new LSTM(32, return_sequences: true, stateful: true));
            model.Add(new LSTM(32, stateful: true));
            model.Add(new Dense(10, activation: "softmax"));

            model.Compile(loss: "categorical_crossentropy",
                          optimizer: "rmsprop",
                          metrics: new[] { "accuracy" });

            // Generate dummy training data
            double[][][] x_train = null; // Accord.Math.Jagged.Random(1000, timesteps, data_dim); // TODO: Add better method in Accord
            int[]        y_train = Accord.Math.Vector.Random(1000, min: 0, max: num_classes);

            // Generate dummy validation data
            double[,,] x_val = null; // Accord.Math.Jagged.Random(1000, timesteps, data_dim); // TODO: Add better method in Accord
            int[] y_val = Accord.Math.Vector.Random(1000, min: 0, max: num_classes);

            model.fit(x_train, y_train,
                      batch_size: batch_size, epochs: 5, shuffle: Shuffle.False,
                      validation_data: new Array[] { x_val, y_val });
        }
示例#15
0
        public static void Main(string[] args)
        {
            // CreateHostBuilder(args).Build().Run();
            //CreateWebHostBuilder(args).Build().Run();
            Sequential Seq = new Sequential();

            Seq.Add(new Dense(32, activation: "relu", input_shape: new Shape(250, 250, 3)));
            Seq.Add(new Dense(64, activation: "relu"));
            Seq.Add(new Dense(1, activation: "sigmoid"));

            Console.WriteLine(Backend.GetBackend());
            var function = Backend.Function(Seq.Layers(0), Seq.Layers(1));

            Console.WriteLine(function);
            NDarray x = np.array(new float[, ] {
                { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 }
            });
            NDarray y   = np.array(new float[] { 0, 1, 1, 0 });
            var     val = (42, 2);
            // var data = tf.ones(new TensorShape(new int[] {1, 259, 259, 3}));

            var           data = Backend.ones();
            KerasIterator iter = new KerasIterator(data);
            var           z    = new PyIter(iter.PyObject);

            z.MoveNext();
            var output = z.Current;
            var res    = function(data);

            Console.WriteLine("function Results:");
            Console.WriteLine(res);
        }
示例#16
0
        public void sequential_guide_stacked_lstm()
        {
            int data_dim    = 16;
            int timesteps   = 8;
            int num_classes = 10;

            // expected input data shape: (batch_size, timesteps, data_dim)
            var model = new Sequential();

            model.Add(new LSTM(32, return_sequences: true,
                               input_shape: new[] { timesteps, data_dim })); // returns a sequence of vectors of dimension 32
            model.Add(new LSTM(32, return_sequences: true));                 // returns a sequence of vectors of dimension 32
            model.Add(new LSTM(32));                                         // return a single vector of dimension 32
            model.Add(new Dense(10, activation: "softmax"));

            model.Compile(loss: "categorical_crossentropy",
                          optimizer: "rmsprop",
                          metrics: new[] { "accuracy" });

            // Generate dummy training data
            double[][][] x_train = null; // Accord.Math.Jagged.Random(1000, timesteps, data_dim); // TODO: Add better method in Accord
            int[]        y_train = Accord.Math.Vector.Random(1000, min: 0, max: num_classes);

            // Generate dummy validation data
            double[,,] x_val = null; // Accord.Math.Jagged.Random(1000, timesteps, data_dim); // TODO: Add better method in Accord
            int[] y_val = Accord.Math.Vector.Random(1000, min: 0, max: num_classes);

            model.fit(x_train, y_train,
                      batch_size: 64, epochs: 5,
                      validation_data: new Array[] { x_val, y_val });
        }
示例#17
0
        public void sequential_guide_mlp_binary()
        {
            // Generate dummy data
            double[,] x_train = Accord.Math.Matrix.Random(1000, 20);
            int[] y_train = Accord.Math.Vector.Random(1000, min: 0, max: 10);
            double[,] x_test = Accord.Math.Matrix.Random(1000, 20);
            int[] y_test = Accord.Math.Vector.Random(1000, min: 0, max: 10);

            var model = new Sequential();

            model.Add(new Dense(64, input_dim: 20, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(64, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(1, activation: "sigmoid"));

            model.Compile(loss: "binary_crossentropy",
                          optimizer: "rmsprop",
                          metrics: new[] { "accuracy" });

            model.fit(x_train, y_train,
                      epochs: 20,
                      batch_size: 128);

            var score = model.evaluate(x_test, y_test, batch_size: 128);
        }
示例#18
0
        public void sequential_guide_mlp_multiclass()
        {
            // Generate dummy data
            double[,] x_train = Accord.Math.Matrix.Random(1000, 20);
            int[] y_train = Accord.Math.Vector.Random(1000, min: 0, max: 10);
            double[,] x_test = Accord.Math.Matrix.Random(1000, 20);
            int[] y_test = Accord.Math.Vector.Random(1000, min: 0, max: 10);

            var model = new Sequential();

            // Dense(64) is a fully-connected layer with 64 hidden units.
            // in the first layer, you must specify the expected input data shape:
            // here, 20-dimensional vectors.

            model.Add(new Dense(64, activation: "relu", input_dim: 20));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(64, activation: "relu"));
            model.Add(new Dropout(0.5));
            model.Add(new Dense(10, activation: "softmax"));

            var sgd = new SGD(lr: 0.01, decay: 1e-6, momentum: 0.9, nesterov: true);

            model.Compile(loss: "categorical_crossentropy",
                          optimizer: sgd,
                          metrics: new[] { "accuracy" });

            model.fit(x_train, y_train,
                      epochs: 20,
                      batch_size: 128);

            var score = model.evaluate(x_test, y_test, batch_size: 128);
        }
示例#19
0
 private static void BuildMLP(int[] imageDim, int numClasses)
 {
     model.Add(new Dense(dim: 3072, shape: imageDim[0], act: OptActivations.ReLU));
     model.Add(new Dense(dim: 2000, act: OptActivations.ReLU));
     model.Add(new Dropout(0.2));
     model.Add(new Dense(dim: numClasses));
 }
示例#20
0
        static void Main(string[] args)
        {
            //Setup Engine

            Global.UseEngine(SiaNet.Backend.MxNetLib.SiaNetBackend.Instance, DeviceType.CPU);

            //Prep Data
            var(x, y) = PrepDataset();
            x.Head();
            DataFrameIter trainSet = new DataFrameIter(x, y);

            //Build model with simple fully connected layers
            var model = new Sequential();

            model.EpochEnd += Model_EpochEnd;
            model.Add(new Dense(64, ActType.ReLU));
            model.Add(new Dense(1, ActType.Sigmoid));

            //Compile with Optimizer, Loss and Metric
            model.Compile(OptimizerType.SGD, LossType.MeanSquaredError, MetricType.BinaryAccurary);

            // Train for 100 epoch with batch size of 2
            model.Train(trainSet, 1000, 2);

            //Create prediction data to evaluate
            DataFrame2D predX = new DataFrame2D(2);

            predX.Load(0, 0, 0, 1); //Result should be 0 and 1

            var rawPred = model.Predict(predX);

            Console.ReadLine();
        }
示例#21
0
        public static void BuildModel()
        {
            model = new Sequential();
            model.Add(new Dense(dim: 2, shape: 2, act: OptActivations.Sigmoid));
            model.Add(new Dense(dim: 2));

            model.OnEpochEnd += Model_OnEpochEnd;
        }
示例#22
0
        public static void BuildModel()
        {
            model = new Sequential();
            model.Add(new Dense(dim: 2, shape: 2, act: OptActivations.Sigmoid, weightInitializer: new Model.Initializers.Xavier()));
            model.Add(new Dense(dim: 2));

            model.OnEpochEnd += Model_OnEpochEnd;
        }
示例#23
0
 private static void createModel()
 {
     model = new Sequential();
     model.Add(new Dense(INPUT_LAYER_SIZE, activation: "sigmoid" /*, input_dim: 1*/));     //relu - better
     model.Add(new Dense(ASSOCIATIONS_LAYER_SIZE /* *5 better */, activation: "sigmoid")); // relu - better
     model.Add(new Dense(RESULT_LAYER_SIZE, activation: "sigmoid"));
     model.Compile(loss: "mean_squared_error" /*binary_crossentropy - better*/, optimizer: new SGD(lr: learningRate), metrics: new string[] { "accuracy" });
 }
 private static void BuildMLP()
 {
     model = new Sequential(new Shape(imgDim));
     model.Add(new Dense(dim: 200, activation: new SiaNet.Layers.Activations.ReLU()));
     model.Add(new Dense(dim: 400, activation: new SiaNet.Layers.Activations.ReLU()));
     model.Add(new Dropout(0.2));
     model.Add(new Dense(dim: labelDim));
 }
示例#25
0
        public static void Run()
        {
            // Create
            var trainX = new NDArray(new float[] { 0, 0, 0, 1, 1, 0, 1, 1 }).Reshape(4, 2);
            var trainY = new NDArray(new float[] { 0, 1, 1, 0 });

            var batch_size = 2;
            var train_data = new NDArrayIter(trainX, trainY, batch_size);
            var val_data   = new NDArrayIter(trainX, trainY, batch_size);

            var net = new Sequential();

            net.Add(new Dense(64, ActivationType.Relu));
            net.Add(new Dense(1));

            var gpus    = TestUtils.ListGpus();
            var ctxList = gpus.Count > 0 ? gpus.Select(x => Context.Gpu(x)).ToArray() : new[] { Context.Cpu() };

            net.Initialize(new Uniform(), ctxList.ToArray());
            var   trainer             = new Trainer(net.CollectParams(), new Adam());
            var   epoch               = 1000;
            var   metric              = new BinaryAccuracy();
            var   binary_crossentropy = new LogisticLoss();
            float lossVal             = 0;

            for (var iter = 0; iter < epoch; iter++)
            {
                train_data.Reset();
                lossVal = 0;
                while (!train_data.End())
                {
                    var         batch   = train_data.Next();
                    var         data    = Utils.SplitAndLoad(batch.Data[0], ctxList);
                    var         label   = Utils.SplitAndLoad(batch.Label[0], ctxList);
                    NDArrayList outputs = null;
                    using (var ag = Autograd.Record())
                    {
                        outputs = Enumerable.Zip(data, label, (x, y) =>
                        {
                            var z        = net.Call(x);
                            NDArray loss = binary_crossentropy.Call(z, y);
                            loss.Backward();
                            lossVal += loss.Mean();
                            return(z);
                        }).ToList();
                    }

                    metric.Update(label, outputs.ToArray());
                    trainer.Step(batch.Data[0].Shape[0]);
                }

                var(name, acc) = metric.Get();
                metric.Reset();
                Console.WriteLine($"Loss: {lossVal}");
                Console.WriteLine($"Training acc at epoch {iter}: {name}={acc * 100}%");
            }
        }
示例#26
0
        private static Sequential BuildFCModel()
        {
            Sequential model = new Sequential();

            model.Add(new Dense(dim: 784, activation: ActType.ReLU));
            model.Add(new Dense(dim: 10, activation: ActType.Softmax));

            return(model);
        }
示例#27
0
        public void TrainXOR()
        {
            try {
                //Load train data
                float[,] testX = new float[, ] {
                    { 0, 1 },
                };
                float[,] x = new float[, ] {
                    { 0, 0 }, { 0, 1 }, { 1, 0 }, { 1, 1 }
                };
                float[] y = new float[] { 0, 1, 1, 0 };

                //Build sequential model
                var model = new Sequential();
                model.Add(new Dense(32, activation: "relu", input_shape: new Shape(2)));
                model.Add(new Dense(32, activation: "relu"));
                model.Add(new Dropout(0.1d));
                model.Add(new Dense(1, activation: "sigmoid"));

                //Compile and train
                var optimizer = new Adam();
                model.Compile(optimizer: optimizer, loss: "mse", metrics: new string[] { "accuracy" });
                model.Fit(x, y, batch_size: 2, epochs: 1000, verbose: 1);

                float[] predicts;
                predicts = model.Predict(x).GetData <float>();
                predicts = model.PredictOnBatch(x).GetData <float>();
                predicts = model.Predict(x).GetData <float>();
                predicts = model.PredictOnBatch(x).GetData <float>();
                predicts = model.Predict(x).GetData <float>();
                predicts = model.PredictOnBatch(x).GetData <float>();

                Stopwatch watch = new Stopwatch();
                watch.Restart();
                for (int i = 0; i < 5; ++i)
                {
                    predicts = model.PredictOnBatch(testX).GetData <float>();
                }
                watch.Stop();
                string batchMs = watch.GetElapsedMilliseconds().ToString();
                watch.Restart();
                for (int i = 0; i < 5; ++i)
                {
                    predicts = model.Predict(testX).GetData <float>();
                }
                watch.Stop();

                //MainWindow.Instance.Dispatcher.BeginInvoke(new Action(() => {
                //	MainWindow.Instance.DebugTextBox.Text = batchMs + " / " + watch.GetElapsedMilliseconds().ToString();
                //}));
            } catch (Exception ex) {
                //MainWindow.Instance.Dispatcher.BeginInvoke(new Action(() => {
                //	MainWindow.Instance.DebugTextBox.Text = ex.ToString();
                //}));
            }
        }
示例#28
0
        public static void BuildModel()
        {
            model = new Sequential();
            model.Add(new Reshape(targetshape: Shape.Create(1, train.XFrame.Shape[1]), shape: Shape.Create(lookback)));
            model.Add(new LSTM(dim: 5, shape: Shape.Create(1, train.XFrame.Shape[1])));
            model.Add(new Dense(dim: 1));

            model.OnEpochEnd    += Model_OnEpochEnd;
            model.OnTrainingEnd += Model_OnTrainingEnd;
        }
 public static void BuildModel()
 {
     model = new Sequential();
     model.Add(new Dense(dim: 20, shape: 13, act: OptActivations.LeakyReLU));
     model.Add(new Dense(dim: 13, act: OptActivations.LeakyReLU));
     model.Add(new Dropout(rate: 0.2));
     model.Add(new Dense(dim: 1, act: OptActivations.LeakyReLU));
     model.OnEpochEnd    += Model_OnEpochEnd;
     model.OnTrainingEnd += Model_OnTrainingEnd;
 }
示例#30
0
        public static void BuildModel()
        {
            model = new Sequential();
            model.Add(new LSTM(dim: 4, shape: Shape.Create(lookback), returnSequence: true));
            model.Add(new LSTM(dim: 4, shape: Shape.Create(lookback)));
            model.Add(new Dense(dim: 1));

            model.OnEpochEnd    += Model_OnEpochEnd;
            model.OnTrainingEnd += Model_OnTrainingEnd;
        }