private static DirtyImage ForwardCalculateB(Intracommunicator comm, GriddingConstants c, List <List <Subgrid> > metadata, Complex[,,] visibilities, double[,,] uvw, double[] frequencies, Complex[,] PsfCorrelation, float[,] psfCut, float maxSidelobe, Stopwatch watchIdg) { Stopwatch another = new Stopwatch(); comm.Barrier(); if (comm.Rank == 0) { watchIdg.Start(); } var localGrid = IDG.Grid(c, metadata, visibilities, uvw, frequencies); float[,] image = null; float maxSideLobeLevel = 0.0f; var grid_total = comm.Reduce <Complex[, ]>(localGrid, SequentialSum, 0); if (comm.Rank == 0) { var dirtyImage = FFT.BackwardFloat(grid_total, c.VisibilitiesCount); FFT.Shift(dirtyImage); if (comm.Rank == 0) { FitsIO.Write(dirtyImage, "dirtyImage.fits"); } maxSideLobeLevel = maxSidelobe * Residuals.GetMax(dirtyImage); //remove spheroidal image = Residuals.CalcGradientMap(dirtyImage, PsfCorrelation, new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); watchIdg.Stop(); } comm.Broadcast(ref maxSideLobeLevel, 0); comm.Broadcast(ref image, 0); return(new DirtyImage(image, maxSideLobeLevel)); }
public GPUSerialCD(Rectangle totalSize, float[,] psf, float[,] psfSquared, int nrBatchIterations) { this.totalSize = totalSize; psf2 = psfSquared; aMap = PSF.CalcAMap(psf, totalSize); MaxLipschitz = Residuals.GetMax(psfSquared); batchIterations = nrBatchIterations; c = new Context(ContextFlags.FastMath); var gpuIds = Accelerator.Accelerators.Where(id => id.AcceleratorType != AcceleratorType.CPU); if (gpuIds.Any()) { RunsOnGPU = true; accelerator = new CudaAccelerator(c, gpuIds.First().DeviceId); } else { Console.WriteLine("GPU vendor not supported. ILGPU switches to a !!!!VERY!!!! slow CPU implementation"); RunsOnGPU = false; accelerator = new CPUAccelerator(c, 4); } shrink = accelerator.LoadAutoGroupedStreamKernel <Index2, ArrayView2D <float>, ArrayView2D <float>, ArrayView2D <float>, ArrayView <float>, ArrayView <Pixel> >(ShrinkKernel); updateX = accelerator.LoadAutoGroupedStreamKernel <ILGPU.Index, ArrayView2D <float>, ArrayView <Pixel> >(UpdateXKernel); updateB = accelerator.LoadAutoGroupedStreamKernel <Index2, ArrayView2D <float>, ArrayView2D <float>, ArrayView <Pixel> >(UpdateBKernel); }
private static void ReconstructRandom(MeasurementData input, GriddingConstants c, float[,] psf, int blockSize, int iterCount, string file) { var cutFactor = 8; var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, cutFactor); var maxLipschitzCut = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * PSF.CalcMaxLipschitz(psfCut)); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(psf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, 8, blockSize, 0.0f, 0.0f, false, true, false); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var data = new ApproxFast.TestingData(new StreamWriter(file + "_tmp.txt")); var xImage = new float[c.GridSize, c.GridSize]; var xCorr = Copy(xImage); var residualVis = input.Visibilities; var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitzCut), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); var gCorr = new float[c.GridSize, c.GridSize]; var shared = new ApproxFast.SharedData(currentLambda, alpha, 1, 1, 8, CountNonZero(psfCut), approx.psf2, approx.aMap, xImage, xCorr, bMap, gCorr, new Random()); shared.ActiveSet = ApproxFast.GetActiveSet(xImage, bMap, shared.YBlockSize, shared.XBlockSize, lambda, alpha, shared.AMap); shared.BlockLock = new int[shared.ActiveSet.Count]; shared.maxLipschitz = (float)PSF.CalcMaxLipschitz(psfCut); shared.MaxConcurrentIterations = 1000; approx.DeconvolveConcurrentTest(data, 0, 0, 0.0, shared, 1, 1e-5f, Copy(xImage), dirtyImage, psfCut, psf); var output = Tools.LMC.CutN132Remnant(xImage); Tools.WriteToMeltCSV(output.Item1, file + "_1k.csv", output.Item2, output.Item3); FitsIO.Write(output.Item1, file + "_1k.fits"); FitsIO.Write(xImage, file + "_1k2.fits"); approx.DeconvolveConcurrentTest(data, 0, 0, 0.0, shared, iterCount, 1e-5f, Copy(xImage), dirtyImage, psfCut, psf); output = Tools.LMC.CutN132Remnant(xImage); Tools.WriteToMeltCSV(output.Item1, file + "_10k.csv", output.Item2, output.Item3); FitsIO.Write(output.Item1, file + "_10k.fits"); FitsIO.Write(xImage, file + "_10k2.fits"); }
public FastSerialCD(Rectangle totalSize, Rectangle patchSize, float[,] psf, float[,] psfSquared, int processorLimit = -1) { this.patch = patchSize; psf2 = psfSquared; aMap = PSF.CalcAMap(psf, totalSize, patchSize); MaxLipschitz = Residuals.GetMax(psfSquared); parallelOptions = new ParallelOptions(); parallelOptions.MaxDegreeOfParallelism = processorLimit; }
public void ResetLipschitzMap(float[,] psf) { var psf2Local = PSF.CalcPSFSquared(psf); var maxFull = Residuals.GetMax(psf2Local); MaxLipschitz = maxFull; aMap = PSF.CalcAMap(psf, patch); var maxCut = Residuals.GetMax(psf2); for (int i = 0; i < psf2.GetLength(0); i++) { for (int j = 0; j < psf2.GetLength(1); j++) { psf2[i, j] *= (maxFull / maxCut); } } }
public void ResetAMap(float[,] psf) { var psf2Local = PSF.CalcPSFSquared(psf); var maxFull = Residuals.GetMax(psf2Local); aMap = PSF.CalcAMap(psf, totalSize); this.psf = psf; var maxCut = Residuals.GetMax(psf2); for (int i = 0; i < psf2.GetLength(0); i++) { for (int j = 0; j < psf2.GetLength(1); j++) { psf2[i, j] *= (maxFull / maxCut); } } }
private static ReconstructionInfo ReconstructGradientApprox(Data input, float[,] fullPsf, string folder, int cutFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon) { var info = new ReconstructionInfo(); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var psfBMap = psfCut; var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1))); var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))); var fastCD = new FastSerialCD(totalSize, psfCut); var fastCD2 = new FastSerialCD(totalSize, psfCut); fastCD2.ResetLipschitzMap(fullPsf); FitsIO.Write(psfCut, folder + cutFactor + "psf.fits"); var lambda = LAMBDA_GLOBAL * fastCD.MaxLipschitz; var lambdaTrue = (float)(LAMBDA_GLOBAL * PSF.CalcMaxLipschitz(fullPsf)); var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; DeconvolutionResult lastResult = null; var firstTimeConverged = false; var lastLambda = 0.0f; for (int cycle = 0; cycle < maxMajor; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits"); //calc data and reg penalty var dataPenalty = Residuals.CalcPenalty(dirtyImage); var regPenalty = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha); info.lastDataPenalty = dataPenalty; info.lastRegPenalty = regPenalty; var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + ".fits"); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = Math.Max(currentSideLobe / alpha, lambda); writer.Write(cycle + ";" + currentLambda + ";" + currentSideLobe + ";" + ";" + fastCD2.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";");; writer.Flush(); //check wether we can minimize the objective further with the current psf var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff; var minimumReached = (lastResult != null && lastResult.Converged && fastCD2.GetAbsMaxDiff(xImage, dirtyImage, lambdaTrue, alpha) < MAJOR_EPSILON && currentLambda == lambda); if (lambda == lastLambda & !firstTimeConverged) { firstTimeConverged = true; minimumReached = false; } if (!objectiveReached & !minimumReached) { //writer.Write(firstTimeConverged + ";"); //writer.Flush(); info.totalDeconv.Start(); if (!firstTimeConverged) { lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon); } else { bMap = bMapCalculator2.Convolve(dirtyImage); //FitsIO.Write(bMap, folder + dirtyPrefix + "bmap_" + cycle + "_full.fits"); maxB = Residuals.GetMax(bMap); correctionFactor = Math.Max(maxB / (maxDirty * fastCD2.MaxLipschitz), 1.0f); currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = Math.Max(currentSideLobe / alpha, lambdaTrue); info.totalDeconv.Start(); lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, epsilon); info.totalDeconv.Stop(); } info.totalDeconv.Stop(); FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits"); writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n"); writer.Flush(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } else { writer.Write(false + ";0;0\n"); writer.Flush(); break; } lastLambda = currentLambda; } bMapCalculator.Dispose(); bMapCalculator2.Dispose(); return(info); }
private static void ReconstructMinorCycle(MeasurementData input, GriddingConstants c, int cutFactor, float[,] fullPsf, string folder, string file, int minorCycles, float searchPercent, bool useAccelerated = true, int blockSize = 1, int maxCycle = 6) { var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var sidelobeHalf = PSF.CalcMaxSidelobe(fullPsf, 2); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, 8, blockSize, 0.1f, searchPercent, false, useAccelerated); using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, fullPsf)) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + "_lambda.txt"); var data = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt")); var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; for (int cycle = 0; cycle < maxCycle; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; //var residualsConvolver = new PaddedConvolver(PSF.CalcPaddedFourierConvolution(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1))); for (int minorCycle = 0; minorCycle < minorCycles; minorCycle++) { FitsIO.Write(dirtyImage, folder + "/dirtyMinor_" + minorCycle + ".fits"); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentBMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } writer.WriteLine(cycle + ";" + minorCycle + ";" + currentLambda + ";" + minLambda); writer.Flush(); approx.DeconvolveTest(data, cycle, minorCycle, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f); FitsIO.Write(xImage, folder + "/xImageMinor_" + minorCycle + ".fits"); if (currentLambda == lambda | currentLambda == minLambda) { break; } Console.WriteLine("resetting residuals!!"); //reset dirtyImage with full PSF var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } if (currentLambda == lambda & !switchedToOtherPsf) { approx.ResetAMap(fullPsf); currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } writer.Close(); } }
private static void Reconstruct(Data input, int cutFactor, float[,] fullPsf, string folder, string file, int threads, int blockSize, bool accelerated, float randomPercent, float searchPercent) { var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var psfCut = PSF.Cut(fullPsf, cutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, cutFactor); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1))); var random = new Random(123); var approx = new ApproxFast(totalSize, psfCut, threads, blockSize, randomPercent, searchPercent, false, true); var maxLipschitzCut = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * PSF.CalcMaxLipschitz(psfCut)); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; ApproxFast.LAMBDA_TEST = lambdaTrue; ApproxFast.ALPHA_TEST = alpha; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + "_lambda.txt"); var data = new ApproxFast.TestingData(new StreamWriter(folder + "/" + file + ".txt")); var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; for (int cycle = 0; cycle < 7; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitzCut), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); writer.WriteLine("cycle" + ";" + currentLambda); writer.Flush(); approx.DeconvolveTest(data, cycle, 0, xImage, dirtyImage, psfCut, fullPsf, currentLambda, alpha, random, 15, 1e-5f); FitsIO.Write(xImage, folder + "/xImage_" + cycle + ".fits"); if (currentLambda == lambda & !switchedToOtherPsf) { approx.ResetAMap(fullPsf); lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } writer.Close(); }
/// <summary> /// Major cycle implementation for the Serial CD /// </summary> /// <param name="obsName"></param> /// <param name="data"></param> /// <param name="c"></param> /// <param name="useGPU"></param> /// <param name="psfCutFactor"></param> /// <param name="maxMajorCycle"></param> /// <param name="lambda"></param> /// <param name="alpha"></param> /// <param name="deconvIterations"></param> /// <param name="deconvEpsilon"></param> public static void ReconstructSerialCD(string obsName, MeasurementData data, GriddingConstants c, bool useGPU, int psfCutFactor, int maxMajorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon) { var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfVis = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length]; for (int i = 0; i < data.Visibilities.GetLength(0); i++) { for (int j = 0; j < data.Visibilities.GetLength(1); j++) { for (int k = 0; k < data.Visibilities.GetLength(2); k++) { if (!data.Flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } Console.WriteLine("gridding psf"); var psfGrid = IDG.GridW(c, metadata, psfVis, data.UVW, data.Frequencies); var psf = FFT.WStackIFFTFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, psfCutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, psfCutFactor); IDeconvolver deconvolver = null; if (useGPU & GPUSerialCD.IsGPUSupported()) { deconvolver = new GPUSerialCD(totalSize, psfCut, 1000); } else if (useGPU & !GPUSerialCD.IsGPUSupported()) { Console.WriteLine("GPU not supported by library. Switching to CPU implementation"); deconvolver = new FastSerialCD(totalSize, psfCut); } else { deconvolver = new FastSerialCD(totalSize, psfCut); } var psfBMap = psfCut; using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)))) using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)))) { var currentGCalculator = gCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambdaLipschitz = (float)(lambda * maxLipschitz); var lambdaTrue = (float)(lambda * PSF.CalcMaxLipschitz(psf)); var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < maxMajorCycle; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, obsName + "_dirty_serial_majorCycle" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var maxDirty = Residuals.GetMax(dirtyImage); var gradients = gCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(gradients); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz); var objective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var absMax = deconvolver.GetAbsMaxDiff(xImage, gradients, lambdaTrue, alpha); if (absMax >= MAJOR_EPSILON) { lastResult = deconvolver.Deconvolve(xImage, gradients, currentLambda, alpha, deconvIterations, deconvEpsilon); } if (lambda == currentLambda & !switchedToOtherPsf) { currentGCalculator = gCalculator2; lambda = lambdaTrue; maxLipschitz = PSF.CalcMaxLipschitz(psf); switchedToOtherPsf = true; } FitsIO.Write(xImage, obsName + "_model_serial_majorCycle" + cycle + ".fits"); currentWatch.Stop(); totalWatch.Stop(); if (absMax < MAJOR_EPSILON) { break; } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds); } }
/// <summary> /// Major cycle implemnentation for the parallel coordinate descent algorithm /// </summary> /// <param name="data"></param> /// <param name="c"></param> /// <param name="psfCutFactor"></param> /// <param name="maxMajorCycle"></param> /// <param name="maxMinorCycle"></param> /// <param name="lambda"></param> /// <param name="alpha"></param> /// <param name="deconvIterations"></param> /// <param name="deconvEpsilon"></param> public static void ReconstructPCDM(string obsName, MeasurementData data, GriddingConstants c, int psfCutFactor, int maxMajorCycle, int maxMinorCycle, float lambda, float alpha, int deconvIterations, float deconvEpsilon) { var metadata = Partitioner.CreatePartition(c, data.UVW, data.Frequencies); var psfVis = new Complex[data.UVW.GetLength(0), data.UVW.GetLength(1), data.Frequencies.Length]; for (int i = 0; i < data.Visibilities.GetLength(0); i++) { for (int j = 0; j < data.Visibilities.GetLength(1); j++) { for (int k = 0; k < data.Visibilities.GetLength(2); k++) { if (!data.Flags[i, j, k]) { psfVis[i, j, k] = new Complex(1.0, 0); } else { psfVis[i, j, k] = new Complex(0, 0); } } } } Console.WriteLine("gridding psf"); var psfGrid = IDG.Grid(c, metadata, psfVis, data.UVW, data.Frequencies); var psf = FFT.BackwardFloat(psfGrid, c.VisibilitiesCount); FFT.Shift(psf); var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(psf, psfCutFactor); var maxSidelobe = PSF.CalcMaxSidelobe(psf, psfCutFactor); var sidelobeHalf = PSF.CalcMaxSidelobe(psf, 2); var pcdm = new ParallelCoordinateDescent(totalSize, psfCut, Environment.ProcessorCount, 1000); using (var gCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var gCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psf, totalSize), new Rectangle(0, 0, psf.GetLength(0), psf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, psf)) { var currentGCalculator = gCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambdaLipschitz = (float)(lambda * maxLipschitz); var lambdaTrue = (float)(lambda * PSF.CalcMaxLipschitz(psf)); var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = data.Visibilities; ParallelCoordinateDescent.PCDMStatistics lastResult = null; for (int cycle = 0; cycle < maxMajorCycle; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, data.UVW, data.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, obsName + "_dirty_pcdm_majorCycle" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var breakMajor = false; var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; var currentObjective = 0.0; var absMax = 0.0f; for (int minorCycle = 0; minorCycle < maxMinorCycle; minorCycle++) { Console.WriteLine("Beginning Minor Cycle " + minorCycle); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentGCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambdaLipschitz); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } currentObjective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); absMax = pcdm.GetAbsMax(xImage, bMap, lambdaTrue, alpha); if (absMax < MAJOR_EPSILON) { breakMajor = true; break; } lastResult = pcdm.Deconvolve(xImage, bMap, currentLambda, alpha, 40, deconvEpsilon); if (currentLambda == lambda | currentLambda == minLambda) { break; } var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } currentWatch.Stop(); totalWatch.Stop(); if (breakMajor) { break; } if (currentLambda == lambda & !switchedToOtherPsf) { pcdm.ResetAMap(psf); currentGCalculator = gCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; } FitsIO.Write(xImage, obsName + "_model_pcdm_majorCycle" + cycle + ".fits"); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, data.UVW, data.Frequencies); residualVis = Visibilities.Substract(data.Visibilities, modelVis, data.Flags); } Console.WriteLine("Reconstruction finished in (seconds): " + totalWatch.Elapsed.TotalSeconds); } }
private static ReconstructionInfo Reconstruct(Data input, float fullLipschitz, float[,] maskedPsf, string folder, float maskFactor, int maxMajor, string dirtyPrefix, string xImagePrefix, StreamWriter writer, double objectiveCutoff, float epsilon, bool maskPsf2) { var info = new ReconstructionInfo(); var totalSize = new Rectangle(0, 0, input.c.GridSize, input.c.GridSize); var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(maskedPsf, totalSize), new Rectangle(0, 0, maskedPsf.GetLength(0), maskedPsf.GetLength(1))); var maskedPsf2 = PSF.CalcPSFSquared(maskedPsf); if (maskPsf2) { Mask(maskedPsf2, 1e-5f); } writer.WriteLine((CountNonZero(maskedPsf2) - maskedPsf2.Length) / (double)maskedPsf2.Length); var fastCD = new FastSerialCD(totalSize, totalSize, maskedPsf, maskedPsf2); FitsIO.Write(maskedPsf, folder + maskFactor + "psf.fits"); var lambda = 0.4f * fastCD.MaxLipschitz; var lambdaTrue = 0.4f * fullLipschitz; var alpha = 0.1f; var xImage = new float[input.c.GridSize, input.c.GridSize]; var residualVis = input.visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < maxMajor; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(input.c, input.metadata, residualVis, input.uvw, input.frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, input.c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + dirtyPrefix + cycle + ".fits"); //calc data and reg penalty var dataPenalty = Residuals.CalcPenalty(dirtyImage); var regPenalty = ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var regPenaltyCurrent = ElasticNet.CalcPenalty(xImage, lambda, alpha); info.lastDataPenalty = dataPenalty; info.lastRegPenalty = regPenalty; bMapCalculator.ConvolveInPlace(dirtyImage); //FitsIO.Write(dirtyImage, folder + dirtyPrefix + "bmap_" + cycle + ".fits"); var currentLambda = lambda; writer.Write(cycle + ";" + currentLambda + ";" + Residuals.GetMax(dirtyImage) + ";" + dataPenalty + ";" + regPenalty + ";" + regPenaltyCurrent + ";"); writer.Flush(); //check wether we can minimize the objective further with the current psf var objectiveReached = (dataPenalty + regPenalty) < objectiveCutoff; var minimumReached = (lastResult != null && lastResult.IterationCount < 100 && lastResult.Converged); if (!objectiveReached & !minimumReached) { info.totalDeconv.Start(); lastResult = fastCD.Deconvolve(xImage, dirtyImage, currentLambda, alpha, 50000, epsilon); info.totalDeconv.Stop(); FitsIO.Write(xImage, folder + xImagePrefix + cycle + ".fits"); writer.Write(lastResult.Converged + ";" + lastResult.IterationCount + ";" + lastResult.ElapsedTime.TotalSeconds + "\n"); writer.Flush(); FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(input.c, input.metadata, xGrid, input.uvw, input.frequencies); residualVis = Visibilities.Substract(input.visibilities, modelVis, input.flags); } else { writer.Write(false + ";0;0"); writer.Flush(); break; } } return(info); }
private static void ReconstructPCDM(MeasurementData input, GriddingConstants c, float[,] fullPsf, string folder, string file, int minorCycles, float searchPercent, int processorCount) { var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, CUT_FACTOR_PCDM); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, CUT_FACTOR_PCDM); var sidelobeHalf = PSF.CalcMaxSidelobe(fullPsf, 2); var random = new Random(123); var pcdm = new ParallelCoordinateDescent(totalSize, psfCut, 1, 1000, searchPercent); var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfCut, totalSize), new Rectangle(0, 0, psfCut.GetLength(0), psfCut.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) using (var residualsConvolver = new PaddedConvolver(totalSize, fullPsf)) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; var switchedToOtherPsf = false; var writer = new StreamWriter(folder + "/" + file + ".txt"); var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; ParallelCoordinateDescent.PCDMStatistics lastResult = null; for (int cycle = 0; cycle < 6; cycle++) { Console.WriteLine("Beginning Major cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var breakMajor = false; var minLambda = 0.0f; var dirtyCopy = Copy(dirtyImage); var xCopy = Copy(xImage); var currentLambda = 0f; var currentObjective = 0.0; var absMax = 0.0f; for (int minorCycle = 0; minorCycle < minorCycles; minorCycle++) { Console.WriteLine("Beginning Minor Cycle " + minorCycle); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = currentBMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * maxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; currentLambda = (float)Math.Max(currentSideLobe / alpha, lambda); if (minorCycle == 0) { minLambda = (float)(maxB * sidelobeHalf * correctionFactor / alpha); } if (currentLambda < minLambda) { currentLambda = minLambda; } currentObjective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); absMax = pcdm.GetAbsMax(xImage, bMap, lambdaTrue, alpha); if (absMax < MAJOR_STOP) { breakMajor = true; break; } lastResult = pcdm.Deconvolve(xImage, bMap, currentLambda, alpha, 100, 1e-5f); if (currentLambda == lambda | currentLambda == minLambda) { break; } var residualsUpdate = new float[xImage.GetLength(0), xImage.GetLength(1)]; Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { residualsUpdate[i, j] = xImage[i, j] - xCopy[i, j]; } }); residualsConvolver.ConvolveInPlace(residualsUpdate); Parallel.For(0, xCopy.GetLength(0), (i) => { for (int j = 0; j < xCopy.GetLength(1); j++) { dirtyImage[i, j] = dirtyCopy[i, j] - residualsUpdate[i, j]; } }); } currentWatch.Stop(); totalWatch.Stop(); writer.WriteLine(cycle + ";" + currentLambda + ";" + currentObjective + ";" + absMax + ";" + lastResult.IterationCount + ";" + totalWatch.Elapsed.TotalSeconds + ";" + currentWatch.Elapsed.TotalSeconds); writer.Flush(); FitsIO.Write(xImage, folder + "/xImage_pcdm_" + cycle + ".fits"); if (breakMajor) { break; } if (currentLambda == lambda & !switchedToOtherPsf) { pcdm.ResetAMap(fullPsf); currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; writer.WriteLine("switched"); writer.Flush(); } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } writer.Close(); } }
private static void ReconstructSerial(MeasurementData input, GriddingConstants c, float[,] fullPsf, string folder, string file, int processorCount) { var totalWatch = new Stopwatch(); var currentWatch = new Stopwatch(); var totalSize = new Rectangle(0, 0, c.GridSize, c.GridSize); var psfCut = PSF.Cut(fullPsf, CUT_FACTOR_SERIAL); var maxSidelobe = PSF.CalcMaxSidelobe(fullPsf, CUT_FACTOR_SERIAL); var fastCD = new FastSerialCD(totalSize, psfCut, processorCount); var metadata = Partitioner.CreatePartition(c, input.UVW, input.Frequencies); var writer = new StreamWriter(folder + "/" + file + ".txt"); var psfBMap = psfCut; using (var bMapCalculator = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(psfBMap, totalSize), new Rectangle(0, 0, psfBMap.GetLength(0), psfBMap.GetLength(1)))) using (var bMapCalculator2 = new PaddedConvolver(PSF.CalcPaddedFourierCorrelation(fullPsf, totalSize), new Rectangle(0, 0, fullPsf.GetLength(0), fullPsf.GetLength(1)))) { var currentBMapCalculator = bMapCalculator; var maxLipschitz = PSF.CalcMaxLipschitz(psfCut); var lambda = (float)(LAMBDA * maxLipschitz); var lambdaTrue = (float)(LAMBDA * PSF.CalcMaxLipschitz(fullPsf)); var alpha = ALPHA; var switchedToOtherPsf = false; var xImage = new float[c.GridSize, c.GridSize]; var residualVis = input.Visibilities; DeconvolutionResult lastResult = null; for (int cycle = 0; cycle < 6; cycle++) { Console.WriteLine("cycle " + cycle); var dirtyGrid = IDG.GridW(c, metadata, residualVis, input.UVW, input.Frequencies); var dirtyImage = FFT.WStackIFFTFloat(dirtyGrid, c.VisibilitiesCount); FFT.Shift(dirtyImage); FitsIO.Write(dirtyImage, folder + "/dirty" + cycle + ".fits"); currentWatch.Restart(); totalWatch.Start(); var maxDirty = Residuals.GetMax(dirtyImage); var bMap = bMapCalculator.Convolve(dirtyImage); var maxB = Residuals.GetMax(bMap); var correctionFactor = Math.Max(maxB / (maxDirty * fastCD.MaxLipschitz), 1.0f); var currentSideLobe = maxB * maxSidelobe * correctionFactor; var currentLambda = Math.Max(currentSideLobe / alpha, lambda); var objective = Residuals.CalcPenalty(dirtyImage) + ElasticNet.CalcPenalty(xImage, lambdaTrue, alpha); var absMax = fastCD.GetAbsMaxDiff(xImage, bMap, lambdaTrue, alpha); if (absMax >= MAJOR_STOP) { lastResult = fastCD.Deconvolve(xImage, bMap, currentLambda, alpha, 30000, 1e-5f); } if (lambda == currentLambda & !switchedToOtherPsf) { currentBMapCalculator = bMapCalculator2; lambda = lambdaTrue; switchedToOtherPsf = true; } currentWatch.Stop(); totalWatch.Stop(); writer.WriteLine(cycle + ";" + currentLambda + ";" + objective + ";" + absMax + ";" + lastResult.IterationCount + ";" + totalWatch.Elapsed.TotalSeconds + ";" + currentWatch.Elapsed.TotalSeconds); writer.Flush(); if (absMax < MAJOR_STOP) { break; } FFT.Shift(xImage); var xGrid = FFT.Forward(xImage); FFT.Shift(xImage); var modelVis = IDG.DeGridW(c, metadata, xGrid, input.UVW, input.Frequencies); residualVis = Visibilities.Substract(input.Visibilities, modelVis, input.Flags); } } }