public Test(ReseauNeurone neuronet, MnistDatabase baseTest, FormPrincipal frm) { _RNN = neuronet; BaseApprentissage = baseTest; nombre = BaseApprentissage.imageCount; erreurReconnaissances = 0; _form = frm; m_HiPerfTime = new HiPerfTimer(); }
public Test(ReseauNeurone neuronet, MnistDatabase baseTest, FormPrincipal frm, int entree, int sortie, int taille) { _RNN = neuronet; BaseApprentissage = baseTest; nombre = BaseApprentissage.imageCount; erreurReconnaissances = 0; _form = frm; m_HiPerfTime = new HiPerfTimer(); this.Entree = entree; this.Sortie = sortie; this.Taille = taille; }
public Apprentissage(ReseauNeurone neuronet, MnistDatabase baseApprentissage, int nombreSorties, FormPrincipal frm, Boolean distorsion) { _RNN = neuronet; BaseApprentissage = baseApprentissage; nombre = baseApprentissage.imageCount; NombreSorties = nombreSorties; erreurReconnaissances = 0; bonneReconnaissances = 0; nombreBackPropagation = 0; _iEpochsCompleted = 0; _form = frm; m_HiPerfTime = new HiPerfTimer(); archive = new Archive(); this.Distorsion = distorsion; }
public Apprentissage(ReseauNeurone neuronet, double[][] trainMatrix, int nombreSorties, FormPrincipal frm, Boolean distorsion) { _RNN = neuronet; TrainMatrix = trainMatrix; SizePattern = Convert.ToInt32(Math.Sqrt(TrainMatrix[0].Length)); // nombre = baseApprentissage.imageCount; NombreSorties = nombreSorties; erreurReconnaissances = 0; bonneReconnaissances = 0; nombreBackPropagation = 0; _iEpochsCompleted = 0; _form = frm; m_HiPerfTime = new HiPerfTimer(); archive = new Archive(); this.Distorsion = distorsion; }