public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); MulticlassLabels labels = new MulticlassLabels(trainlab); MulticlassLibSVM svm = new MulticlassLibSVM(C, kernel, labels); svm.set_epsilon(epsilon); svm.train(); kernel.init(feats_train, feats_test); double[] out_labels = MulticlassLabels.obtain_from_generic(svm.apply()).get_labels(); foreach (double item in out_labels) Console.Write(item); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double learn_rate = 1.0; int max_iter = 1000; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); AveragedPerceptron perceptron = new AveragedPerceptron(feats_train, labels); perceptron.set_learn_rate(learn_rate); perceptron.set_max_iter(max_iter); perceptron.train(); perceptron.set_features(feats_test); double[] out_labels = LabelsFactory.to_binary(perceptron.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); GaussianNaiveBayes gnb = new GaussianNaiveBayes(feats_train, labels); gnb.train(); double[] out_labels = gnb.apply(feats_test).get_labels(); foreach(double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); LibSVMOneClass svm = new LibSVMOneClass(C, kernel); svm.set_epsilon(epsilon); svm.train(); kernel.init(feats_train, feats_test); DoubleMatrix out_labels = svm.apply().get_labels(); Console.WriteLine(out_labels.ToString()); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); MulticlassLabels labels = new MulticlassLabels(trainlab); LaRank svm = new LaRank(C, kernel, labels); svm.set_batch_mode(false); svm.set_epsilon(epsilon); svm.train(); double[] out_labels = LabelsFactory.to_multiclass(svm.apply(feats_train)).get_labels(); foreach(double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double learn_rate = 1.0; int max_iter = 1000; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); // already tried double[][] double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); Perceptron perceptron = new Perceptron(feats_train, labels); perceptron.set_learn_rate(learn_rate); perceptron.set_max_iter(max_iter); perceptron.train(); perceptron.set_features(feats_test); // already tried double[][] double[] out_labels = perceptron.apply().get_labels(); foreach (double item in out_labels) Console.Write(item); modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double C = 0.9; double epsilon = 1e-3; org.shogun.Math.init_random(17); DoubleMatrix traindata_real = Load.load_numbers(".../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/toy/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); LibLinear svm = new LibLinear(C, feats_train, labels); svm.set_liblinear_solver_type(L2R_L2LOSS_SVC_DUAL); svm.set_epsilon(epsilon); svm.set_bias_enabled(true); svm.train(); svm.set_features(feats_test); DoubleMatrix out_labels = svm.apply().get_labels(); Console.WriteLine(out_labels.ToString()); modshogun.exit_shogun(); }
public virtual Serializable run(IList para) { modshogun.init_shogun_with_defaults(); double learn_rate = (double)((double?)para[0]); int max_iter = (int)((int?)para[1]); DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); AveragedPerceptron perceptron = new AveragedPerceptron(feats_train, labels); perceptron.set_learn_rate(learn_rate); perceptron.set_max_iter(max_iter); perceptron.train(); perceptron.set_features(feats_test); DoubleMatrix out_labels = perceptron.apply().get_labels(); ArrayList result = new ArrayList(); result.Add(perceptron); result.Add(out_labels); modshogun.exit_shogun(); return result; }
public static void Main() { modshogun.init_shogun_with_defaults(); double C = 0.9; double epsilon = 1e-3; Math.init_random(17); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LibLinear svm = new LibLinear(C, feats_train, labels); svm.set_liblinear_solver_type(LIBLINEAR_SOLVER_TYPE.L2R_L2LOSS_SVC_DUAL); svm.set_epsilon(epsilon); svm.set_bias_enabled(true); svm.train(); svm.set_features(feats_test); double[] out_labels = LabelsFactory.to_binary(svm.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); // already tried double[,] double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); BinaryLabels labels = new BinaryLabels(trainlab); MPDSVM svm = new MPDSVM(C, kernel, labels); svm.set_epsilon(epsilon); svm.train(); kernel.init(feats_train, feats_test); // already tried double[,] double[] out_labels = LabelsFactory.to_binary(svm.apply()).get_labels(); foreach (double item in out_labels) Console.Write(item); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); int gamma = 3; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); LDA lda = new LDA(gamma, feats_train, labels); lda.train(); Console.WriteLine(lda.get_bias()); Console.WriteLine(lda.get_w().ToString()); lda.set_features(feats_test); DoubleMatrix out_labels = lda.apply().get_labels(); Console.WriteLine(out_labels.ToString()); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); int gamma = 3; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LDA lda = new LDA(gamma, feats_train, labels); lda.train(); Console.WriteLine(lda.get_bias()); //Console.WriteLine(lda.get_w().toString()); foreach(double item in lda.get_w()) { Console.Write(item); } lda.set_features(feats_test); double[] out_labels = LabelsFactory.to_binary(lda.apply()).get_labels(); foreach(double item in out_labels) { Console.Write(item); } }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double learn_rate = 1.0; int max_iter = 1000; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); Perceptron perceptron = new Perceptron(feats_train, labels); perceptron.set_learn_rate(learn_rate); perceptron.set_max_iter(max_iter); perceptron.train(); perceptron.set_features(feats_test); DoubleMatrix out_labels = perceptron.apply().get_labels(); Console.WriteLine(out_labels.ToString()); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); LibSVMOneClass svm = new LibSVMOneClass(C, kernel); svm.set_epsilon(epsilon); svm.train(); kernel.init(feats_train, feats_test); double[] out_labels = BinaryLabels.obtain_from_generic(svm.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); MulticlassLabels labels = new MulticlassLabels(trainlab); GaussianNaiveBayes gnb = new GaussianNaiveBayes(feats_train, labels); gnb.train(); double[] out_labels = MulticlassLabels.obtain_from_generic(gnb.apply(feats_test)).get_labels(); foreach (double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double C = 0.9; double epsilon = 1e-3; Math.init_random(17); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LibLinear svm = new LibLinear(C, feats_train, labels); svm.set_liblinear_solver_type(LIBLINEAR_SOLVER_TYPE.L2R_L2LOSS_SVC_DUAL); svm.set_epsilon(epsilon); svm.set_bias_enabled(true); svm.train(); svm.set_features(feats_test); double[] out_labels = BinaryLabels.obtain_from_generic(svm.apply()).get_labels(); foreach(double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); BinaryLabels labels = new BinaryLabels(trainlab); GPBTSVM svm = new GPBTSVM(C, kernel, labels); svm.set_epsilon(epsilon); svm.train(); kernel.init(feats_train, feats_test); double[] out_labels = LabelsFactory.to_binary(svm.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); LibSVMOneClass svm = new LibSVMOneClass(C, kernel); svm.set_epsilon(epsilon); svm.train(); kernel.init(feats_train, feats_test); double[] out_labels = svm.apply().get_labels(); foreach (double item in out_labels) Console.Write(item); modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); Labels labels = new Labels(trainlab); LaRank svm = new LaRank(C, kernel, labels); svm.set_batch_mode(false); svm.set_epsilon(epsilon); svm.train(); DoubleMatrix out_labels = svm.apply(feats_train).get_labels(); Console.WriteLine(out_labels.ToString()); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double learn_rate = 1.0; int max_iter = 1000; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); AveragedPerceptron perceptron = new AveragedPerceptron(feats_train, labels); perceptron.set_learn_rate(learn_rate); perceptron.set_max_iter(max_iter); perceptron.train(); perceptron.set_features(feats_test); double[] out_labels = BinaryLabels.obtain_from_generic(perceptron.apply()).get_labels(); foreach(double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun(); Console.WriteLine("Test DoubleMatrix(jblas):"); RealFeatures x = new RealFeatures(); double[][] y = { new double[] { 1, 2 }, new double[] { 3, 4 }, new double[] { 5, 6 } }; DoubleMatrix A = new DoubleMatrix(y); x.set_feature_matrix(A); DoubleMatrix B = x.get_feature_matrix(); Console.WriteLine(B.ToString()); modshogun.exit_shogun(); }
public static void Main(string[] args) { modshogun.init_shogun_with_defaults(); RealFeatures x = new RealFeatures(); double[,] y = new double[2,3] {{1, 2, 3}, {4, 5, 6}}; x.set_feature_matrix(y); double [,] r = x.get_feature_matrix(); foreach (int item in r) { Console.WriteLine(item); } }
public static void Main(string[] args) { modshogun.init_shogun_with_defaults(); RealFeatures x = new RealFeatures(); double[,] y = new double[2, 3] { { 1, 2, 3 }, { 4, 5, 6 } }; x.set_feature_matrix(y); double [,] r = x.get_feature_matrix(); foreach (int item in r) { Console.WriteLine(item); } }
public static void Main() { modshogun.init_shogun_with_defaults(); int gamma = 3; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LDA lda = new LDA(gamma, feats_train, labels); lda.train(); Console.WriteLine(lda.get_bias()); //Console.WriteLine(lda.get_w().toString()); foreach (double item in lda.get_w()) { Console.Write(item); } lda.set_features(feats_test); double[] out_labels = BinaryLabels.obtain_from_generic(lda.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); DoubleMatrix traindata_real = Load.load_numbers("../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); GaussianNaiveBayes gnb = new GaussianNaiveBayes(feats_train, labels); gnb.train(); DoubleMatrix out_labels = gnb.apply(feats_test).get_labels(); Console.WriteLine(out_labels.ToString()); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double width = 2.1; double epsilon = 1e-5; double C = 1.0; double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_multiclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); GaussianKernel kernel = new GaussianKernel(feats_train, feats_train, width); MulticlassLabels labels = new MulticlassLabels(trainlab); LaRank svm = new LaRank(C, kernel, labels); svm.set_batch_mode(false); svm.set_epsilon(epsilon); svm.train(); double[] out_labels = MulticlassLabels.obtain_from_generic(svm.apply(feats_train)).get_labels(); foreach (double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }