public RecogAkshaysPictureNetwork() { Globals.LearningRateForNeurons = (decimal)0.00000000000000000043368086899420177360298112034798; NeuralLayer rawInputLayer = new NeuralLayer(); for (int i = 0; i < 1024 * 1024; i++) { RawInputLayerNeuron riln = new RawInputLayerNeuron((decimal)0, (decimal)2097152); rawInputLayer.AddNeuronToLayer(riln); } Layers.Add(rawInputLayer); NeuralLayer hiddenLayer = new NeuralLayer(); for (int i = 0; i < 1024 * 1024; i++) { HiddenLayerNeuron hln = new HiddenLayerNeuron((decimal)2199023255552); hiddenLayer.AddNeuronToLayer(hln); } Layers.Add(hiddenLayer); foreach (HiddenLayerNeuron hln in hiddenLayer.LayerNeurons) { foreach (RawInputLayerNeuron riln in rawInputLayer.LayerNeurons) { NeuralConnection nc = new NeuralConnection(riln, hln, (decimal)2097152); hln.Inputs.Add(nc); riln.Outputs.Add(nc); } } NeuralLayer outputLayer = new NeuralLayer(); RawOutputLayerNeuron roln = new RawOutputLayerNeuron((decimal)2305843009213693952); foreach (HiddenLayerNeuron hln in hiddenLayer.LayerNeurons) { NeuralConnection nc = new NeuralConnection(hln, roln, (decimal)2199023255552); hln.Outputs.Add(nc); roln.Inputs.Add(nc); } }
public void AddNeuronToLayer(RawInputLayerNeuron riln) { LayerNeurons.Add((object)riln); }