示例#1
0
        public void Train(List <Person> people, int numberOfTrees, int skillSetSize)
        {
            double[][] inputs = _dataPointService.GenerateDataPointsFromPeople(people, skillSetSize);

            int[] expectedResults = _dataPointService.GenerateExpectedResultFromPeople(people);

            // Create the forest learning algorithm
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = numberOfTrees, // use 10 trees in the forest
            };

            // Finally, learn a random forest from data
            _randomForest = teacher.Learn(inputs, expectedResults);

            // We can estimate class labels using
            trainingPredictions = _randomForest.Decide(inputs);

            // And the classification error (0.0006) can be computed as
            double error = new ZeroOneLoss(expectedResults).Loss(_randomForest.Decide(inputs));

            File.WriteAllLines(
                @"C:\Users\Niall\Documents\Visual Studio 2015\Projects\LinkedInSearchUi\LinkedIn Dataset\XML\random_forest_predictions.txt" // <<== Put the file name here
                , trainingPredictions.Select(d => d.ToString()).ToArray());
        }
        public void sample_ratio_less_than_1()
        {
            // https://github.com/accord-net/framework/issues/576

            string localPath = Path.Combine(NUnit.Framework.TestContext.CurrentContext.TestDirectory, "gh576");

            Accord.Math.Random.Generator.Seed = 1;

            var nursery = new DataSets.Nursery(localPath);

            int[][] inputs  = nursery.Instances;
            int[]   outputs = nursery.ClassLabels;

            var teacher = new RandomForestLearning(nursery.VariableNames)
            {
                NumberOfTrees = 1,
                SampleRatio   = 0.5
            };

            teacher.ParallelOptions.MaxDegreeOfParallelism = 1;

            var forest = teacher.Learn(inputs, outputs);

            forest.ParallelOptions.MaxDegreeOfParallelism = 1;

            int[] predicted = forest.Decide(inputs);

            double error = new ZeroOneLoss(outputs).Loss(forest.Decide(inputs));

            Assert.AreEqual(0.0023148148148148147d, error, 1e-10);
        }
示例#3
0
        public double CheckAccuracy(int trees, double ratio)
        {
            var variables = new DecisionVariable[Data.FeatureCount];

            for (int i = 0; i < Data.FeatureCount; i++)
            {
                variables[i] = new DecisionVariable(i.ToString(), DecisionVariableKind.Continuous);
            }
            var options = new ParallelOptions();

            options.MaxDegreeOfParallelism = 4;
            double accuracy = 0;

            for (int k = 0; k < Folds; k++)
            {
                RandomForestLearning teacher = new RandomForestLearning(variables);
                //teacher.ParallelOptions = options;
                teacher.SampleRatio   = ratio;
                teacher.NumberOfTrees = trees;
                teacher.
                var model   = teacher.Learn(TrainInput[k], TrainOutput[k]);
                int correct = 0;
                for (int i = 0; i < Data.InstancesPerFold; i++)
                {
                    var label = model.Decide(TestInput[k][i]);
                    if (label == TestOutput[k][i])
                    {
                        correct++;
                    }
                }
                accuracy += (double)correct / Data.InstancesPerFold;
            }

            return(accuracy);
        }
        public void test_serialization()
        {
            // Fix random seed for reproducibility
            Accord.Math.Random.Generator.Seed = 1;

            string[][] text = Resources.iris_data.Split(new[] { "\r\n" },
                                                        StringSplitOptions.RemoveEmptyEntries).Apply(x => x.Split(','));

            double[][] inputs = text.GetColumns(0, 1, 2, 3).To <double[][]>();

            string[] labels = text.GetColumn(4);

            var codebook = new Codification("Output", labels);

            int[] outputs = codebook.Translate("Output", labels);

            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 10, // use 10 trees in the forest
            };

            var forest1 = teacher.Learn(inputs, outputs);


            byte[] bytes = forest1.Save();

            var forest2 = Serializer.Load <RandomForest>(bytes);

            forest1.ParallelOptions.MaxDegreeOfParallelism = forest2.ParallelOptions.MaxDegreeOfParallelism = 1;

            Assert.IsTrue(forest1.Decide(inputs).IsEqual(forest2.Decide(inputs)));
            Assert.IsTrue(forest1.Transform(inputs).IsEqual(forest2.Transform(inputs)));
        }
        public void Run()
        {
            // iris datasetini yüklüyoruz
            var iris = new Accord.DataSets.Iris();

            // iris inputları ve outputlarını tanımlıyoruz
            double[][] inputs  = iris.Instances;
            int[]      outputs = iris.ClassLabels;

            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 10, // 10 trees in the forest
            };

            // forest variable'ı oluşturup train ediyoruz
            var forest = teacher.Learn(inputs, outputs);

            // kendi inputlarımızla test ediyoruz
            int[] predicated = forest.Decide(inputs);

            // error hesaplama. outputs expected, predicated ise tahmin edilen
            double error = new ZeroOneLoss(outputs).Loss(predicated);

            // error 0 çıkacak
            System.Console.WriteLine(error);
        }
示例#6
0
        //private static double[] NormalizeData(double[] data, int min, int max)
        //{
        //	var sorted = data.OrderBy(d => d);
        //	double dataMax = sorted.First();
        //	double dataMin = sorted.Last();
        //	double[] ret = new double[data.Length];

        //	double avgIn = (double)((min + max) / 2.0);
        //	double avgOut = ((dataMax + dataMin) / 2.0);

        //	for (int i = 0; i < data.Length; i++)
        //	{
        //		ret[i] = (double) Math.Round(avgOut * (data[i] + avgIn) / 2);
        //	}

        //	return ret;
        //}

        // train classifier and enter trades based on predictions
        private void Classifier()
        {
            Generator.Seed = 1;

            // input columns
            double[][] inputs = z;  // result;

            // normalize the inputs array
            //for (int i = 0; i < 5; i++)
            //{
            //	z[i] = NormalizeData(z[i], 0, 1);
            //}

            // output column
            int[] outputs = Label;

            // set the learning algorithm
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 1000,
                //SampleRatio = 1.0,
                //Join = 2,
                //CoverageRatio = 0.5,
            };

            // train the model
            var model = teacher.Learn(inputs, outputs);

            // set array to be predicted
            double[] inputs2 = x[0];

            // compute the machine's answer for the array to be classified
            int answers = model.Decide(inputs2);

            // enter long if predicted value is 1
            if (answers == 1)
            {
                EnterLong();
            }

            // enter short if predicted value is 0
            if (answers == 0)
            {
                EnterShort();
            }


            //Calculate the confusion matrix
            ConfusionMatrix cm = ConfusionMatrix.Estimate(model, inputs, outputs);

            false_neg = cm.FalseNegatives;
            false_pos = cm.FalsePositives;

            // Print false positive and false negative
            Print(false_neg + ",    " + false_pos);
        }
示例#7
0
        private static double[] RandomForest(List <Wine> testingSet, List <Wine> trainingSet)
        {
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 4
            };
            var forest = teacher.Learn(trainingSet.Select(x => x.GetParams()).ToArray(), trainingSet.Select(x => x.Quality).ToArray());
            var result = forest.Decide(testingSet.Select(x => x.GetParams()).ToArray());

            return(result.Select(x => (double)x).ToArray());
        }
示例#8
0
        public void buildModel()
        {
            var attributes = DecisionVariable.FromData(inputs);
            // Now, let's create the forest learning algorithm
            var teacher = new RandomForestLearning(attributes)
            {
                NumberOfTrees = 1,
                SampleRatio   = 1.0
            };

            // Finally, learn a random forest from data
            this.forest = teacher.Learn(inputs, outputs);
        }
示例#9
0
        public void test_learn()
        {
            #region doc_iris
            // Fix random seed for reproducibility
            Accord.Math.Random.Generator.Seed = 1;

            // In this example, we will process the famous Fisher's Iris dataset in
            // which the task is to classify weather the features of an Iris flower
            // belongs to an Iris setosa, an Iris versicolor, or an Iris virginica:
            //
            //  - https://en.wikipedia.org/wiki/Iris_flower_data_set
            //

            // First, let's load the dataset into an array of text that we can process
            string[][] text = Resources.iris_data.Split(new[] { "\r\n" },
                                                        StringSplitOptions.RemoveEmptyEntries).Apply(x => x.Split(','));

            // The first four columns contain the flower features
            double[][] inputs = text.GetColumns(0, 1, 2, 3).To <double[][]>();

            // The last column contains the expected flower type
            string[] labels = text.GetColumn(4);

            // Since the labels are represented as text, the first step is to convert
            // those text labels into integer class labels, so we can process them
            // more easily. For this, we will create a codebook to encode class labels:
            //
            var codebook = new Codification("Output", labels);

            // With the codebook, we can convert the labels:
            int[] outputs = codebook.Translate("Output", labels);

            // Create the forest learning algorithm
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 10, // use 10 trees in the forest
            };

            // Finally, learn a random forest from data
            var forest = teacher.Learn(inputs, outputs);

            // We can estimate class labels using
            int[] predicted = forest.Decide(inputs);

            // And the classification error (0.0006) can be computed as
            double error = new ZeroOneLoss(outputs).Loss(forest.Decide(inputs));
            #endregion

            Assert.IsTrue(error < 0.015);
        }
示例#10
0
        private int predict(double[][] trainingInputs, int[] trainingOutputs, double[][] inputToPredict)
        {
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = forestNumberOfTrees,
                Join          = forestJoin
            };

            var forest = teacher.Learn(trainingInputs, trainingOutputs);

            int[] predicted = forest.Decide(inputToPredict);

            return(predicted[0]);
        }
示例#11
0
        private static RandomForest CreateRandomForestModel(
            DecisionVariable[] decisionVariables,
            GridSearchParameterCollection bestParameters,
            double[][] trainingInputs,
            int[] trainingOutputs)
        {
            var teacher = new RandomForestLearning(decisionVariables)
            {
                NumberOfTrees = (int)bestParameters["trees"].Value,
                SampleRatio   = bestParameters["sampleRatio"].Value,
                Join          = (int)bestParameters["join"].Value
            };
            // Create a training algorithm and learn the training data
            var rfcModel = teacher.Learn(trainingInputs, trainingOutputs);

            return(rfcModel);
        }
示例#12
0
        /// <summary>
        /// Classify our data using random forest classifer and save the model.
        /// </summary>
        /// <param name="train_data">Frame objects that we will use to train classifers.</param>
        /// <param name="test_data">Frame objects that we will use to test classifers.</param>
        /// <param name="train_label">Labels of the train data.</param>
        /// <param name="test_label">Labels of the test data.</param>
        /// <param name="Classifier_Path">Path where we want to save the classifer on the disk.</param>
        /// <param name="Classifier_Name">Name of the classifer we wnat to save.</param>
        /// <param name="NumOfTrees">Number of trees used in Random forest classifer</param>
        /// <returns></returns>
        public void RandomForestLearning(double[][] train_data, double[][] test_data, int[] train_label, int[] test_label, String Classifier_Path, String Classifier_Name, int NumOfTrees = 20)
        {
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = NumOfTrees,
            };

            var forest = teacher.Learn(train_data, train_label);

            int[] predicted = forest.Decide(test_data);

            double error = new ZeroOneLoss(test_label).Loss(predicted);

            Console.WriteLine(error);

            forest.Save(Path.Combine(Classifier_Path, Classifier_Name));
        }
示例#13
0
        public void Uczenie(string[] naglowki, string[][] dane)
        {
            Codification kody = new Codification(naglowki, dane);

            int[][] symbole       = kody.Transform(dane);
            int[][] daneWejsciowe = symbole.Get(null, 0, -1);

            KolumnaWynikow = symbole.GetColumn(-1);

            RandomForestLearning nauczyciel = new RandomForestLearning()
            {
                SampleRatio = IloscDanychModelu
            };

            RandomForest las = nauczyciel.Learn(daneWejsciowe, KolumnaWynikow);

            Rezultaty = las.Decide(daneWejsciowe);
        }
示例#14
0
        static RandomForest RandomForestClassification(List <int[]> trainingData, List <int[]> testingData, out double precision)
        {
            int    testingCount      = testingData.Count / 10;
            int    trainingCount     = testingData.Count - testingCount;
            double errorAverage      = 0;
            int    indexTestingStart = testingData.Count - testingCount;
            int    indexTestingEnd   = testingData.Count;
            double prec = 0;

            Console.WriteLine("Random Forest Classification");
            RandomForest bestforest = null;

            for (int i = 0; i < iterations; i++)
            {
                var watch = System.Diagnostics.Stopwatch.StartNew();
                Console.WriteLine("Testing from: {0} to {1}", indexTestingStart, indexTestingEnd);
                int[][] inputData, testinputData;
                int[]   outputData, testoutputData;

                PrepareInputOutput(out inputData, out outputData, out testinputData, out testoutputData, trainingData, testingData, indexTestingStart, indexTestingEnd);
                var RanForest = new RandomForestLearning()
                {
                    NumberOfTrees = 100,
                };
                var forest = RanForest.Learn(inputData, outputData);
                Console.WriteLine("Medis sukurtas - ismokta");
                double er = new ZeroOneLoss(testoutputData).Loss(forest.Decide(testinputData));
                Console.WriteLine("Apmokymo tikslumas: {0}", 1 - er);
                if (1 - er > prec)
                {
                    prec       = 1 - er;
                    bestforest = forest;
                }
                watch.Stop();
                var elapsedMs = watch.ElapsedMilliseconds;
                Console.WriteLine("Iteracija baigta per: {0}ms", elapsedMs);
                indexTestingEnd    = indexTestingStart;
                indexTestingStart -= testingCount;
                errorAverage      += er;
                Console.WriteLine("------------------------------------------------------------------------------");
            }
            precision = 1 - (errorAverage / iterations);
            return(bestforest);
        }
示例#15
0
        public void constructor_test()
        {
            CultureInfo.DefaultThreadCurrentCulture = CultureInfo.InvariantCulture;
            var times     = ReadCSV(Properties.Resources.times);
            var features  = ReadCSV(Properties.Resources.features);
            var didSolve  = times.Select(list => list.Select(d => d < 5000).ToList()).ToList();
            var foldCount = 10;

            for (int i = 0; i < foldCount; i++)
            {
                var elementsPerFold = didSolve.Count / foldCount;
                var y_test          = didSolve.Skip(i * elementsPerFold).Take(elementsPerFold);
                var y_train         = didSolve.Except(y_test).ToList();
                var x_test          = features.Skip(i * elementsPerFold).Take(elementsPerFold);
                var x_train         = features.Except(x_test);

                var allSolverPredictions = new List <bool[]>();
                for (int j = 0; j < y_train.First().Count; j++)
                {
                    var y_train_current_solver = y_train.Select(list => list.Skip(j).First()).Select(b => b ? 1 : 0);
                    var randomForestLearning   = new RandomForestLearning()
                    {
                        Trees = 10
                    };
                    var currentSolverPredictions = new List <bool>();

                    var randomForest = randomForestLearning.Learn(x_train.Select(list => list.ToArray()).ToArray(),
                                                                  y_train_current_solver.ToArray());

                    foreach (var test_instance in x_test)
                    {
                        var compute = randomForest.Compute(test_instance.ToArray());
                        currentSolverPredictions.Add(compute != 0);
                    }
                    allSolverPredictions.Add(currentSolverPredictions.ToArray());
                }

                Assert.AreEqual(allSolverPredictions.Count, 29);
                foreach (var p in allSolverPredictions)
                {
                    Assert.AreEqual(p.Length, 424);
                }
            }
        }
示例#16
0
        private static void randomForest(double[][] inputs, int[] outputs)
        {
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 100, // Use 100 decision trees to cover this problem
            };

            // Use the learning algorithm to induce the tree
            RandomForest rf = teacher.Learn(inputs, outputs);

            // Classify the samples using the RF
            int[] predicted = rf.Decide(inputs);

            // Create a confusion matrix to check the quality of the predictions:
            var cm = new ConfusionMatrix(predicted: predicted, expected: outputs);

            // Check the accuracy measure:
            double accuracy = cm.Accuracy; // (should be 1.0 or 100%)
        }
        /// <summary>
        /// Trains the classifier and computes the training error if option provided.
        /// </summary>
        /// <param name="trainingData">The training data that will be used to train classifier.</param>
        /// <param name="trainingLabels">The training labels related to provided training data.</param>
        /// <param name="calculateError">The boolean check to tell if the training error should be calculated.</param>
        public override void Train(List <double[]> trainingData, List <int> trainingLabels, bool calculateError = true)
        {
            LearningAlgorithm = new RandomForestLearning();
            if (NumTrees > 0)
            {
                LearningAlgorithm.NumberOfTrees = NumTrees;
            }

            if (SamplePropotion > 0)
            {
                LearningAlgorithm.SampleRatio = SamplePropotion;
            }

            Model = LearningAlgorithm.Learn(trainingData.ToArray(), trainingLabels.ToArray());
            if (calculateError == true)
            {
                TrainingError = new ZeroOneLoss(trainingLabels.ToArray()).Loss(Model.Decide(trainingData.ToArray()));
            }
        }
示例#18
0
        public Classifier(List <Person> data, int size)
        {
            var testSet  = data.Take(size).ToList();
            var learnSet = data.Skip(size).ToList();

            double[][] inputs = learnSet.Select(x => new double[6] {
                x.Parch, x.Pclass, x.SibSp, x.Sex, x.Fare, x.Embarked
            }).ToArray();

            int[] outputs = learnSet.Select(x => x.Survived).ToArray();


            DecisionVariable[] variables =
            {
                new DecisionVariable("Parch",    DecisionVariableKind.Discrete),
                new DecisionVariable("Pclass",   DecisionVariableKind.Discrete),
                new DecisionVariable("SibSp",    DecisionVariableKind.Discrete),
                new DecisionVariable("Sex",      DecisionVariableKind.Discrete),
                new DecisionVariable("Fare",     DecisionVariableKind.Continuous),
                new DecisionVariable("Embarked", DecisionVariableKind.Discrete)
            };

            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 10,
            };
            var tree   = teacher.Learn(inputs, outputs);
            var result = tree.Decide(testSet.Select(x => new double[6] {
                x.Parch, x.Pclass, x.SibSp, x.Sex, x.Fare, x.Embarked
            }).ToArray());
            var good = 0f;

            for (int i = 0; i < result.Count(); ++i)
            {
                if (result[i] == (testSet[i].Survived))
                {
                    good++;
                }
            }
            Console.WriteLine($"Good: {good/ size * 100}%");
        }
        /// <summary>
        /// <inheritdoc />
        /// </summary>
        public override void Train()
        {
            var inputs  = data.GetSelectedInput(features);
            var outputs = data.GetExpectedClassificationOutput();

            var DecisionVariables = new List <DecisionVariable>();

            for (int i = 0; i < inputs[0].Length; i++)
            {
                DecisionVariables.Add(DecisionVariable.Continuous(i.ToString(), new DoubleRange(0.0, 1.0)));
            }

            var teacher = new RandomForestLearning(DecisionVariables.ToArray())
            {
                NumberOfTrees = 20
            };

            forest = teacher.Learn(inputs, outputs);

            Save();
        }
示例#20
0
        public override void Train(List <double[]> trainingData, List <double> trainingLabels, bool calculateError = true)
        {
            LearningAlgorithm = new RandomForestLearning();
            if (NumTrees > 0)
            {
                LearningAlgorithm.NumberOfTrees = NumTrees;
            }

            if (SamplePropotion > 0)
            {
                LearningAlgorithm.SampleRatio = SamplePropotion;
            }
            int[][] TrainingData   = TypeCasters.DoubleMultiArrayToInt(trainingData).ToArray();
            int[]   TrainingLabels = TypeCasters.DoubleArrayToInt(trainingLabels).ToArray();

            Model = LearningAlgorithm.Learn(TrainingData, TrainingLabels);
            if (calculateError == true)
            {
                TrainingError = new ZeroOneLoss(TrainingLabels).Loss(Model.Decide(TrainingData));
            }
        }
        public void test_learn()
        {
            #region doc_iris
            // Fix random seed for reproducibility
            Accord.Math.Random.Generator.Seed = 1;

            // In this example, we will process the famous Fisher's Iris dataset in
            // which the task is to classify weather the features of an Iris flower
            // belongs to an Iris setosa, an Iris versicolor, or an Iris virginica:
            //
            //  - https://en.wikipedia.org/wiki/Iris_flower_data_set
            //

            // First, let's load the dataset:
            var        iris    = new DataSets.Iris();
            double[][] inputs  = iris.Instances;   // flower features
            int[]      outputs = iris.ClassLabels; // flower categories

            // Create the forest learning algorithm
            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = 10, // use 10 trees in the forest
            };

            // Finally, learn a random forest from data
            var forest = teacher.Learn(inputs, outputs);

            // We can estimate class labels using
            int[] predicted = forest.Decide(inputs);

            // And the classification error (0.0006) can be computed as
            double error = new ZeroOneLoss(outputs).Loss(forest.Decide(inputs));
            #endregion

            Assert.AreEqual(10, forest.Trees.Length);

            Assert.IsTrue(error < 0.015);
        }
示例#22
0
        static void Main(string[] args)
        {
            // sample input
            double[][] inputs =
            {
                new double[] { 0, 0 },
                new double[] { 1, 0 },
                new double[] { 0, 1 },
                new double[] { 1, 1 },
            };

            // sample binary output
            int[] outputs =
            {
                0,
                1,
                1,
                0,
            };

            // sample binary output for Neural Network
            double[][] nnOutputs =
            {
                new double[] { 1, 0 },
                new double[] { 0, 1 },
                new double[] { 0, 1 },
                new double[] { 1, 0 },
            };

            // sample multinomial output
            int[] multiOutputs =
            {
                0,
                1,
                1,
                2,
            };

            // 1. Binary Logistic Regression
            var learner = new IterativeReweightedLeastSquares <LogisticRegression>()
            {
                MaxIterations = 100
            };
            var model = learner.Learn(inputs, outputs);

            var preds = model.Decide(inputs);

            Console.WriteLine("\n\n*Binary Logistic Regression Predictions: {0}", String.Join(", ", preds));

            // 2. Multinomial Logistic Regression
            var learner2 = new MultinomialLogisticLearning <GradientDescent>()
            {
                MiniBatchSize = 4
            };
            var model2 = learner2.Learn(inputs, multiOutputs);

            var preds2 = model2.Decide(inputs);

            Console.WriteLine("\n\n*Multinomial Logistic Regression Predictions: {0}", String.Join(", ", preds2));

            // 3. Binary Naive Bayes Classifier
            var learner3 = new NaiveBayesLearning <NormalDistribution>();
            var model3   = learner3.Learn(inputs, outputs);

            var preds3 = model2.Decide(inputs);

            Console.WriteLine("\n\n*Binary Naive Bayes Predictions: {0}", String.Join(", ", preds3));

            // 4. RandomForest
            var learner4 = new RandomForestLearning()
            {
                NumberOfTrees = 3,

                CoverageRatio = 0.9,

                SampleRatio = 0.9
            };
            var model4 = learner4.Learn(inputs, outputs);

            var preds4 = model4.Decide(inputs);

            Console.WriteLine("\n\n*Binary RandomForest Classifier Predictions: {0}", String.Join(", ", preds4));

            // 5. SVM
            var learner5 = new SequentialMinimalOptimization <Gaussian>();
            var model5   = learner.Learn(inputs, outputs);

            var preds5 = model5.Decide(inputs);

            Console.WriteLine("\n\n*Binary SVM Predictions: {0}", String.Join(", ", preds5));

            // 6. Neural Network
            var network = new ActivationNetwork(
                new BipolarSigmoidFunction(2),
                2,
                1,
                2
                );

            var teacher = new LevenbergMarquardtLearning(network);

            Console.WriteLine("\n-- Training Neural Network");
            int    numEpoch = 3;
            double error    = Double.PositiveInfinity;

            for (int i = 0; i < numEpoch; i++)
            {
                error = teacher.RunEpoch(inputs, nnOutputs);
                Console.WriteLine("* Epoch {0} - error: {1:0.0000}", i + 1, error);
            }

            double[][] nnPreds = inputs.Select(
                x => network.Compute(x)
                ).ToArray();

            int[] preds6 = nnPreds.Select(
                x => x.ToList().IndexOf(x.Max())
                ).ToArray();

            Console.WriteLine("\n\n*Binary Neural Network Predictions: {0}", String.Join(", ", preds6));


            Console.WriteLine("\n\n\n\nDONE!!");
            Console.ReadKey();
        }
示例#23
0
        public static void TrainClassifiers()
        {
            // -------------------------- Logistic Regression ----------------------------------

            var MLRG = new MultinomialLogisticLearning <GradientDescent>();

            Predictor.MultinomialLogisticRegression = MLRG.Learn(PredictorPointsTrain, FrequencyLabelsInt);



            // -------------------------- Random Forest ----------------------------------

            var teacher = new RandomForestLearning()
            {
                NumberOfTrees = NumTrees,
            };

            Predictor.RandomForest = teacher.Learn(PredictorPointsTrain, FrequencyLabelsInt);


            // -------------------------- Minimum Mean Distance ----------------------------------

            Predictor.MinimumMeanDistance = new MinimumMeanDistanceClassifier();

            // Compute the analysis and create a classifier
            Predictor.MinimumMeanDistance.Learn(PredictorPointsTrain, FrequencyLabelsInt);


            // -------------------------- Support Vector Machine ----------------------------------
            // Declare the parameters and ranges to be searched

            /*GridSearchRange[] ranges =
             * {
             *  new GridSearchRange("complexity", new double[] { 0.00000001, 5.20, 0.30, 0.50 } ),
             * };*/


            // Instantiate a new Grid Search algorithm for Kernel Support Vector Machines

            /*            var gridsearch = new GridSearch<SupportVectorMachine>(ranges);
             *
             *          // Set the fitting function for the algorithm
             *          gridsearch.Fitting = delegate (GridSearchParameterCollection parameters, out double error)
             *          {
             *              // The parameters to be tried will be passed as a function parameter.
             *              double complexity = parameters["complexity"].Value;
             *
             *              // Use the parameters to build the SVM model
             *              SupportVectorMachine ksvm = new SupportVectorMachine( 2);
             *
             *
             *              // Create a new learning algorithm for SVMs
             *              SequentialMinimalOptimization smo = new SequentialMinimalOptimization(ksvm, PredictorPointsTrain, FrequencyLabelsInt);
             *              smo.Complexity = complexity;
             *
             *              // Measure the model performance to return as an out parameter
             *              error = smo.Run();
             *
             *              return ksvm; // Return the current model
             *          };
             *
             *
             *          // Declare some out variables to pass to the grid search algorithm
             *          GridSearchParameterCollection bestParameters; double minError;
             *
             *          // Compute the grid search to find the best Support Vector Machine
             *          Predictor.SVM = gridsearch.Compute(out bestParameters, out minError);*/
        }
        public void LargeRunTest()
        {
            string localPath = Path.Combine(NUnit.Framework.TestContext.CurrentContext.TestDirectory, "rf");

            #region doc_nursery
            // Fix random seed for reproducibility
            Accord.Math.Random.Generator.Seed = 1;

            // This example uses the Nursery Database available from the University of
            // California Irvine repository of machine learning databases, available at
            //
            //   http://archive.ics.uci.edu/ml/machine-learning-databases/nursery/nursery.names
            //
            // The description paragraph is listed as follows.
            //
            //   Nursery Database was derived from a hierarchical decision model
            //   originally developed to rank applications for nursery schools. It
            //   was used during several years in 1980's when there was excessive
            //   enrollment to these schools in Ljubljana, Slovenia, and the
            //   rejected applications frequently needed an objective
            //   explanation. The final decision depended on three subproblems:
            //   occupation of parents and child's nursery, family structure and
            //   financial standing, and social and health picture of the family.
            //   The model was developed within expert system shell for decision
            //   making DEX (M. Bohanec, V. Rajkovic: Expert system for decision
            //   making. Sistemica 1(1), pp. 145-157, 1990.).
            //

            // Let's begin by loading the raw data. This string variable contains
            // the contents of the nursery.data file as a single, continuous text.
            //
            var     nursery = new DataSets.Nursery(path: localPath);
            int[][] inputs  = nursery.Instances;
            int[]   outputs = nursery.ClassLabels;

            // Now, let's create the forest learning algorithm
            var teacher = new RandomForestLearning(nursery.VariableNames)
            {
                NumberOfTrees = 1,
                SampleRatio   = 1.0
            };

            // Finally, learn a random forest from data
            var forest = teacher.Learn(inputs, outputs);

            // We can estimate class labels using
            int[] predicted = forest.Decide(inputs);

            // And the classification error (0) can be computed as
            double error = new ZeroOneLoss(outputs).Loss(forest.Decide(inputs));
            #endregion

            Assert.AreEqual(0, error, 1e-10);
            Assert.IsTrue(outputs.IsEqual(predicted));

            Assert.AreEqual(0, error);

            for (int i = 0; i < inputs.Length; i++)
            {
                int expected = outputs[i];
                int actual   = forest.Compute(inputs[i].ToDouble());

                Assert.AreEqual(expected, actual);
            }
        }
示例#25
0
 public double Train(double[][] inputs, int[] outputs)
 {
     _forest = _teacher.Learn(inputs, outputs);
     return(0.0);
 }
示例#26
0
        public void LargeRunTest()
        {
            #region doc_nursery
            // Fix random seed for reproducibility
            Accord.Math.Random.Generator.Seed = 1;

            // This example uses the Nursery Database available from the University of
            // California Irvine repository of machine learning databases, available at
            //
            //   http://archive.ics.uci.edu/ml/machine-learning-databases/nursery/nursery.names
            //
            // The description paragraph is listed as follows.
            //
            //   Nursery Database was derived from a hierarchical decision model
            //   originally developed to rank applications for nursery schools. It
            //   was used during several years in 1980's when there was excessive
            //   enrollment to these schools in Ljubljana, Slovenia, and the
            //   rejected applications frequently needed an objective
            //   explanation. The final decision depended on three subproblems:
            //   occupation of parents and child's nursery, family structure and
            //   financial standing, and social and health picture of the family.
            //   The model was developed within expert system shell for decision
            //   making DEX (M. Bohanec, V. Rajkovic: Expert system for decision
            //   making. Sistemica 1(1), pp. 145-157, 1990.).
            //

            // Let's begin by loading the raw data. This string variable contains
            // the contents of the nursery.data file as a single, continuous text.
            //
            string nurseryData = Resources.nursery;

            // Those are the input columns available in the data
            //
            string[] inputColumns =
            {
                "parents", "has_nurs", "form",   "children",
                "housing", "finance",  "social", "health"
            };

            // And this is the output, the last column of the data.
            //
            string outputColumn = "output";


            // Let's populate a data table with this information.
            //
            DataTable table = new DataTable("Nursery");
            table.Columns.Add(inputColumns);
            table.Columns.Add(outputColumn);

            string[] lines = nurseryData.Split(
                new[] { "\r\n" }, StringSplitOptions.RemoveEmptyEntries);

            foreach (var line in lines)
            {
                table.Rows.Add(line.Split(','));
            }


            // Now, we have to convert the textual, categorical data found
            // in the table to a more manageable discrete representation.
            //
            // For this, we will create a codebook to translate text to
            // discrete integer symbols:
            //
            Codification codebook = new Codification(table);

            // And then convert all data into symbols
            //
            DataTable  symbols = codebook.Apply(table);
            double[][] inputs  = symbols.ToArray(inputColumns);
            int[]      outputs = symbols.ToArray <int>(outputColumn);

            // From now on, we can start creating the decision tree.
            //
            var attributes = DecisionVariable.FromCodebook(codebook, inputColumns);

            // Now, let's create the forest learning algorithm
            var teacher = new RandomForestLearning(attributes)
            {
                NumberOfTrees = 1,
                SampleRatio   = 1.0
            };

            // Finally, learn a random forest from data
            var forest = teacher.Learn(inputs, outputs);

            // We can estimate class labels using
            int[] predicted = forest.Decide(inputs);

            // And the classification error (0) can be computed as
            double error = new ZeroOneLoss(outputs).Loss(forest.Decide(inputs));
            #endregion

            Assert.AreEqual(0, error, 1e-10);
            Assert.IsTrue(outputs.IsEqual(predicted));

            Assert.AreEqual(12960, lines.Length);
            Assert.AreEqual("usual,proper,complete,1,convenient,convenient,nonprob,recommended,recommend", lines[0]);
            Assert.AreEqual("great_pret,very_crit,foster,more,critical,inconv,problematic,not_recom,not_recom", lines[lines.Length - 1]);

            Assert.AreEqual(0, error);

            for (int i = 0; i < inputs.Length; i++)
            {
                int expected = outputs[i];
                int actual   = forest.Compute(inputs[i]);

                Assert.AreEqual(expected, actual);
            }
        }
示例#27
0
        private List <Colaborador> metodoquedefineoscolaboradores(int pGerencia, int pClassificacao, int pDificuldade, int pPrioridade, int pTipoFalha)
        {
            string    filename = "C:/Users/Oscar/Downloads/solics-completo.csv";
            CsvReader reader   = new CsvReader(filename, hasHeaders: true);

            DataTable table = reader.ToTable();

            string[] inputNames  = new[] { "Id", "Gerencia", "Cliente", "Sistema", "Modulo", "Classificacao", "TipoFalha", "Prioridade", "Dificuldade" };
            string[] outputNames = new[] { "Colaborador" };

            /*var codification1 = new Codification()
             * {
             *  { "Id", CodificationVariable.Ordinal},
             *  { "Gerencia", CodificationVariable.Discrete },
             *  { "Cliente", CodificationVariable.Discrete },
             *  { "Sistema", CodificationVariable.Discrete },
             *  { "Modulo", CodificationVariable.Discrete },
             *  { "Classificacao", CodificationVariable.Discrete},
             *  { "TipoFalha", CodificationVariable.Discrete },
             *  { "Prioridade", CodificationVariable.Discrete },
             *  { "Dificuldade", CodificationVariable.Discrete },
             * };
             *
             * var codification2 = new Codification()
             * {
             *  DefaultMissingValueReplacement = Double.NaN
             * };
             *
             * codification1.Learn(table);
             * codification2.Learn(table);
             *
             */

            Codification codebook = new Codification(table);


            //DataTable symbols = codification.Apply(table);
            //int[] outputis = symbols.ToArray<int>("COLABORADOR");

            // Now, transform symbols into a vector representation, growing the number of inputs:
            //double[][] x = codification.Transform(table, inputNames, out inputNames).ToDouble();
            int[][] x = codebook.Apply(table, "Id", "Gerencia", "Cliente", "Sistema", "Modulo", "Classificacao", "TipoFalha", "Prioridade", "Dificuldade").ToJagged(out inputNames).ToInt32();
            //double[][] y = codification.Transform(table, outputNames, out outputNames).ToDouble();
            //int[] y = codification.Apply(table, "COLABORADOR").ToJagged(out outputName);

            string outputName;    // can see below the new variable names that will be generated)

            int[] outputs = codebook.Apply(table, "Colaborador").ToVector(out outputName).ToInt32();



            /*
             * // Create the multi-class learning algorithm for the machine
             * var teacher = new MultilabelSupportVectorLearning<Gaussian>()
             * {
             *  // Configure the learning algorithm to use SMO to train the
             *  //  underlying SVMs in each of the binary class subproblems.
             *  Learner = (param) => new SequentialMinimalOptimization<Gaussian>()
             *  {
             *      // Estimate a suitable guess for the Gaussian kernel's parameters.
             *      // This estimate can serve as a starting point for a grid search.
             *      UseKernelEstimation = true
             *  }
             * };
             *
             * // Learn a machine
             * var machine = teacher.Learn(x, outputs);
             *
             * // Create the multi-class learning algorithm for the machine
             * var calibration = new MultilabelSupportVectorLearning<Gaussian>()
             * {
             *  Model = machine, // We will start with an existing machine
             *
             *  // Configure the learning algorithm to use SMO to train the
             *  //  underlying SVMs in each of the binary class subproblems.
             *  Learner = (param) => new ProbabilisticOutputCalibration<Gaussian>()
             *  {
             *      Model = param.Model // Start with an existing machine
             *  }
             * };
             *
             *
             * // Configure parallel execution options
             * calibration.ParallelOptions.MaxDegreeOfParallelism = 1;
             *
             * // Learn a machine
             * calibration.Learn(x, outputs);
             *
             * // Obtain class predictions for each sample
             * bool[][] predicted = machine.Decide(x);
             *
             * // Get class scores for each sample
             * double[][] scores = machine.Scores(x);
             *
             * // Get log-likelihoods (should be same as scores)
             * double[][] logl = machine.LogLikelihoods(x);
             *
             * // Get probability for each sample
             * double[][] prob = machine.Probabilities(x);
             *
             * // Compute classification error using mean accuracy (mAcc)
             * double error = new HammingLoss(outputs).Loss(predicted);
             * double loss = new CategoryCrossEntropyLoss(outputs).Loss(prob);*/

            Accord.Math.Random.Generator.Seed = 1;
            DecisionVariable[] Attributes = DecisionVariable.FromCodebook(codebook, inputNames);

            // Now, let's create the forest learning algorithm
            var teacher = new RandomForestLearning(Attributes)
            {
                NumberOfTrees = 1,
                SampleRatio   = 1.0
            };

            // Finally, learn a random forest from data
            var forest = teacher.Learn(x, outputs);

            // We can estimate class labels using
            int[] predicted = forest.Decide(x);

            // And the classification error (0) can be computed as
            double error = new ZeroOneLoss(outputs).Loss(forest.Decide(x));

            // Compute classification error using mean accuracy (mAcc)
            double error2 = new HammingLoss(outputs).Loss(predicted);

            List <Colaborador> lLista = new List <Colaborador>();

            //lLista.AddRange(db.Colaborador.Where(x => x.Nome.StartsWith("J")).OrderBy(x => x.Nome));
            return(lLista);
        }