示例#1
0
        /// <summary>计算峰列表中峰对象所对应的物质的量</summary>
        /// <param name="peak_list">峰对象列表</param>
        /// <param name="capacity">物质的量</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo Quantitate(List <Peak> peak_list, PeakQuantificationMethod pqm)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;
            double _capacity         = 0.0;

            if (pqm.Calibration_Method != PeakQuantificationMethod.CalibrationMethod.cm_ExternalStandard)
            {
                return(QualitativeErrorInfo.CalibrationMethodError);
            }

            //外标定量
            foreach (Peak _p in peak_list)
            {
                if (!CPeakFilter.FindCheckedPeak(_p))
                {
                    continue;
                }

                _capacity = 0.0;

                _rc = GetCapacity(_p, pqm, ref _capacity);
                if (_rc == QualitativeErrorInfo.Success)
                {
                    _p.Capacity = _capacity;
                }
            }
            return(_rc);
        }
示例#2
0
        /// <summary>归一法</summary>
        /// <param name="std_peak_list">峰对象列表</param>
        /// <param name="qm">定量参数</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo Quantitate(List <Peak> peak_list, PeakQuantificationMethod pqm)
        {
            if (peak_list == null)
            {
                return(QualitativeErrorInfo.PeakListError);
            }

            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            double _sum = GetResponseSum(peak_list, pqm.Qualitative_Method, PeakQuantificationMethod.SumMethod.sm_absolute_adjust);

            if (_sum == 0)
            {
                return(QualitativeErrorInfo.CapacityError);
            }

            //归一法首先需要定性,以确定校准因子
            foreach (Peak _p in peak_list)
            {
                if (!CPeakFilter.FindCheckedPeak(_p))
                {
                    continue;
                }

                _p.Capacity = _p.AdjustFactor * GetResponseValue(_p, pqm.Qualitative_Method) / _sum;
            }

            return(_rc);
        }
示例#3
0
        /// <summary>计算峰列表中每个有效峰的校正因子</summary>
        /// <param name="std_peak_list">峰对象列表</param>
        /// <param name="qm">响应值类型选择</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo GetAdjustFactor(List <Peak> std_peak_list, PeakQuantificationMethod.QualitativeMethod qm)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            try
            {
                List <Peak> _valid_peaks = std_peak_list.FindAll(CPeakFilter.FindCheckedPeak);
                if (_valid_peaks != null)
                {
                    foreach (Peak _p in _valid_peaks)
                    {
                        double _factor = 0.0;

                        _rc = ComputeAbsoluteAdjustFactor(_p, qm, ref _factor);
                        if (_rc == QualitativeErrorInfo.Success)
                        {
                            _p.AdjustFactor = _factor;
                        }
                    }
                }
            }
            catch (System.Exception ex)
            {
                Debug.WriteLine(ex.Message);
                _rc = QualitativeErrorInfo.PeakListError;
            }

            return(_rc);
        }
示例#4
0
        /// <summary>计算指定峰的物质的量</summary>
        /// <param name="p">峰对象</param>
        /// <param name="internal_standard_peak">内标峰</param>
        /// <param name="pqm">定量参数</param>
        /// <param name="capacity">物质的量</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo Capacity(Peak p, double response, PeakQuantificationMethod.CurveFittingMethod cfm, ref double capacity)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            if ((p.Coefficient == null) || (p.Coefficient.Count < 2))
            {
                capacity = p.AdjustFactor * response;
            }
            else
            {
                switch (cfm)
                {
                case PeakQuantificationMethod.CurveFittingMethod.cfm_linear:
                case PeakQuantificationMethod.CurveFittingMethod.cfm_quadratic:
                case PeakQuantificationMethod.CurveFittingMethod.cfm_cubic:
                    capacity = 0;
                    for (int k = 0; k < p.Coefficient.Count; k++)
                    {
                        capacity += p.Coefficient[k] * Math.Pow(response, k);
                    }
                    break;

                case PeakQuantificationMethod.CurveFittingMethod.cfm_log:
                    capacity = Math.Pow(10, (p.Coefficient[0] + p.Coefficient[1] * Math.Log10(response)));
                    break;

                default:
                    _rc = QualitativeErrorInfo.CurveFitMethodError;
                    break;
                }
            }
            return(_rc);
        }
示例#5
0
        /// <summary>百分比法</summary>
        /// <param name="std_peak_list">峰对象列表</param>
        /// <param name="qm">定量参数</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo Quantitate(List <Peak> peak_list, PeakQuantificationMethod pqm)
        {
            if (peak_list == null)
            {
                return(QualitativeErrorInfo.PeakListError);
            }

            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            double _sum = GetResponseSum(peak_list, pqm.Qualitative_Method, PeakQuantificationMethod.SumMethod.sm_normal);

            if (_sum == 0)
            {
                return(QualitativeErrorInfo.ResponseValueError);
            }

            foreach (Peak _p in peak_list)
            {
                if (!CPeakFilter.FindNaturalPeak(_p))
                {
                    continue;
                }

                _p.Checked  = true;
                _p.Capacity = GetResponseValue(_p, pqm.Qualitative_Method) / _sum;
            }

            return(_rc);
        }
示例#6
0
        /// <summary>计算指定峰绝对校正因子</summary>
        /// <param name="std_peak">峰对象</param>
        /// <param name="qm">响应值类型选择</param>
        /// <param name="adjust_factor">校正因子</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo ComputeAbsoluteAdjustFactor(Peak std_peak, PeakQuantificationMethod.QualitativeMethod qm, ref double adjust_factor)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.CapacityError;

            if (std_peak.Capacity >= 0 && !double.IsNaN(std_peak.Capacity))
            {
                adjust_factor = std_peak.Capacity / GetResponseValue(std_peak, qm);
                _rc           = QualitativeErrorInfo.Success;
            }
            return(_rc);
        }
示例#7
0
        /// <summary>根据标样曲线,进行多点校正/// </summary>
        /// <param name="std_papl">标样列表</param>
        /// <param name="unknown_papl">未知样品</param>
        /// <param name="am">分析参数</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo QA_MultiPointFitting(List <PeakAndPointList> std_papl, PeakAndPointList unknown_papl, AnalyzerMethod am)
        {
            if (std_papl == null || std_papl.Count <= 0 || unknown_papl == null)
            {
                return(QualitativeErrorInfo.PeakListError);
            }

            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            //检查标样的浓度是否正常
            if (SampleIsError(std_papl))
            {
                Debug.WriteLine("The sample doesn't meet the requirements for calculation.");
                return(QualitativeErrorInfo.ConcentrationEmpty);
            }

            //计算标样的峰信息
            _rc = CCalculationFactory.ComputePeakInfo(std_papl[0].PeakList, std_papl[0].PointList, am.CalculationMethod);
            if (_rc != QualitativeErrorInfo.Success)
            {
                return(_rc);
            }

            List <Peak> _valid_standard_list = std_papl[0].PeakList.FindAll(CPeakFilter.FindCheckedPeak);

            if (_valid_standard_list == null)
            {
                return(QualitativeErrorInfo.StandardSampleError);
            }
            //计算校准曲线
            //List<PeakAndPointList> _unknown_std_papl = std_papl.GetRange(1, std_papl.Count - 1);
            //_rc = QA_CreateCalibrationCoeff(_unknown_std_papl, _valid_standard_list, am);
            _rc = QA_CreateCalibrationCoeff(std_papl, _valid_standard_list, am);

            //计算未知样的峰信息
            ResetPeakList(unknown_papl.PeakList);
            _rc = CCalculationFactory.ComputePeakInfo(unknown_papl.PeakList, unknown_papl.PointList, am.CalculationMethod);
            if (_rc != QualitativeErrorInfo.Success)
            {
                return(_rc);
            }

            //定性未知峰
            List <Peak> _target_list = CIdentificationFactory.Identify(_valid_standard_list, unknown_papl.PeakList, am.IdentificationMethod);

            if (_target_list == null)
            {
                return(QualitativeErrorInfo.IdentifyPeakError);
            }

            //定量
            _rc = CQuantificationFactory.Quantitate(_target_list, am.QuantificationMethod);
            return(_rc);
        }
示例#8
0
        /// <summary>单点校正函数,此单点校正有不止一个标样,按多个标样的平均值计算。</summary>
        /// <param name="std_papl">标样列表</param>
        /// <param name="unknown_papl">未知样品</param>
        /// <param name="am">分析参数</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo QA_SinglePointFitting(List <PeakAndPointList> std_papl, PeakAndPointList unknown_papl, AnalyzerMethod am)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            if (std_papl == null || std_papl.Count <= 0)
            {
                return(QualitativeErrorInfo.PeakListError);
            }

            //计算标样的峰信息
            foreach (PeakAndPointList _papl in std_papl)
            {
                CCalculationFactory.ComputePeakInfo(_papl.PeakList, _papl.PointList, am.CalculationMethod);
            }

            List <Peak> _std_list = std_papl[0].PeakList.FindAll(CPeakFilter.FindCheckedPeak);

            if (_std_list == null)
            {
                return(QualitativeErrorInfo.StandardSampleError);
            }

            _rc = CQuantificationFactory.GetAdjustFactor(_std_list, am.QuantificationMethod);
            if (_rc != QualitativeErrorInfo.Success)
            {
                return(_rc);
            }

            //如果存在多组标样,需要首先定性这些标样
            if (std_papl.Count > 1)
            {
                List <Peak> _aver_std_list = GetAverStandardPeakList(std_papl, _std_list, am.IdentificationMethod, am.QuantificationMethod);
                if (_aver_std_list != null)
                {
                    _std_list = _aver_std_list;
                }
            }
            //计算未知峰信息
            ResetPeakList(unknown_papl.PeakList);

            CCalculationFactory.ComputePeakInfo(unknown_papl.PeakList, unknown_papl.PointList, am.CalculationMethod);

            //定性未知样
            List <Peak> _target_list = CIdentificationFactory.Identify(_std_list, unknown_papl.PeakList, am.IdentificationMethod);

            if (_target_list == null)
            {
                return(QualitativeErrorInfo.IdentifyPeakError);
            }

            //定量未知样
            _rc = CQuantificationFactory.Quantitate(_target_list, am.QuantificationMethod);
            return(_rc);
        }
示例#9
0
        /// <summary>计算峰列表中每个有效峰的相对校正因子</summary>
        /// <param name="std_peak_list">标准峰对象列表</param>
        /// <param name="qm">响应值类型选择</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo GetAdjustFactor(List <Peak> std_peak_list, PeakQuantificationMethod.QualitativeMethod qm)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;
            double _factor           = 0.0;

            if (std_peak_list == null)
            {
                return(QualitativeErrorInfo.PeakListError);
            }

            //至少包含一个内标物和被测物
            if (std_peak_list.Count < 2)
            {
                return(QualitativeErrorInfo.PeakListError);
            }

            //查找内标物
            Peak _internal_standard_peak = std_peak_list.Find(CPeakFilter.FindInternalStandardPeak);

            if (_internal_standard_peak == null)
            {
                return(QualitativeErrorInfo.InternalStandardError);
            }

            //计算内标物的绝对校正因子
            _rc = CQuantificationBase.ComputeAbsoluteAdjustFactor(_internal_standard_peak, qm, ref _factor);
            if (_rc != QualitativeErrorInfo.Success)
            {
                return(QualitativeErrorInfo.InternalStandardError);
            }

            _internal_standard_peak.AdjustFactor = _factor;

            //计算未知物的校正因子(注意未知物列表要剔除内标物)
            foreach (Peak _p in std_peak_list)
            {
                if (!CPeakFilter.FindCheckedPeak(_p) || ((_p.InternalStandard != null) && (_p.InternalStandard != "")))
                {
                    continue;
                }

                _factor = 0.0;

                _rc = CQuantificationBase.ComputeRelativeAdjustFactor(_p, _internal_standard_peak, qm, ref _factor);
                if (_rc == QualitativeErrorInfo.Success)
                {
                    _p.AdjustFactor = _factor;
                }
            }

            return(_rc);
        }
示例#10
0
        public static QualitativeErrorInfo QA_CreateCalibrationCoeff(List <PeakAndPointList> standard_papl, List <Peak> peak_param, AnalyzerMethod am)
        {
            if ((standard_papl == null) || (standard_papl.Count == 0) || (peak_param == null) || (peak_param.Count == 0))
            {
                return(QualitativeErrorInfo.PeakListError);
            }

            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            //计算标样的峰信息
            foreach (PeakAndPointList _papl in standard_papl)
            {
                _rc = CCalculationFactory.ComputePeakInfo(_papl.PeakList, _papl.PointList, am.CalculationMethod);
                if (_rc != QualitativeErrorInfo.Success)
                {
                    continue;
                }

                CIdentificationFactory.Identify(peak_param, _papl.PeakList, am.IdentificationMethod);
            }

            foreach (Peak _p in peak_param)
            {
                List <Peak> _peak_list = CQuantificationFactory.GetStandardPeakList(standard_papl, _p.Name, am.QuantificationMethod);
                if (_peak_list == null)
                {
                    continue;
                }

                _p.Coefficient = CQuantificationFactory.GetCoefficient(_peak_list, am.QuantificationMethod);
                if (_p.Coefficient == null)
                {
                    continue;
                }

                string _fitting_formula = CQuantificationFactory.GetFittingFormula(_p.Coefficient, am.QuantificationMethod);

                foreach (Peak _p0 in _peak_list)
                {
                    if ((_p0.InternalStandard == null) || _p0.InternalStandard.Trim() == "")
                    {
                        _p0.Coefficient    = _p.Coefficient.GetRange(0, _p.Coefficient.Count);
                        _p0.FittingFormula = _fitting_formula;
                    }
                }
            }
            return(_rc);
        }
示例#11
0
        /// <summary>计算指定峰相对对校正因子</summary>
        /// <param name="std_peak">标准峰对象</param>
        /// <param name="internal_standard_peak">内标峰对象</param>
        /// <param name="qm">响应值类型选择</param>
        /// <param name="adjust_factor">校正因子</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo ComputeRelativeAdjustFactor(Peak std_peak, Peak internal_standard_peak, PeakQuantificationMethod.QualitativeMethod qm, ref double adjust_factor)
        {
            double _absolute_adjust_factor = 0.0;

            QualitativeErrorInfo _rc = CQuantificationExternal.ComputeAbsoluteAdjustFactor(std_peak, qm, ref _absolute_adjust_factor);

            if (_rc != QualitativeErrorInfo.Success)
            {
                return(_rc);
            }

            if (internal_standard_peak.AdjustFactor == 0)
            {
                return(QualitativeErrorInfo.InternalStandardError);
            }

            adjust_factor = _absolute_adjust_factor / internal_standard_peak.AdjustFactor;
            return(_rc);
        }
示例#12
0
        /// <summary>归一化法</summary>
        /// <param name="std_papl">标准样品</param>
        /// <param name="unknown_papl">未知样品</param>
        /// <param name="pcm">计算方法参数</param>
        /// <param name="pqm">定量方法参数</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo QA_CorrectedNormalization(PeakAndPointList std_papl, PeakAndPointList unknown_papl, AnalyzerMethod am)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            //计算标样峰信息
            _rc = CCalculationFactory.ComputePeakInfo(std_papl.PeakList, std_papl.PointList, am.CalculationMethod);
            if (_rc != QualitativeErrorInfo.Success)
            {
                return(_rc);
            }

            //计算标样校正因子
            _rc = CQuantificationFactory.GetAdjustFactor(std_papl.PeakList, am.QuantificationMethod);
            if (_rc != QualitativeErrorInfo.Success)
            {
                return(_rc);
            }

            ResetPeakList(unknown_papl.PeakList);

            //计算未知样峰信息
            _rc = CCalculationFactory.ComputePeakInfo(unknown_papl.PeakList, unknown_papl.PointList, am.CalculationMethod);
            if (_rc != QualitativeErrorInfo.Success)
            {
                return(_rc);
            }

            //定性未知样
            List <Peak> _target_list = CIdentificationFactory.Identify(std_papl.PeakList, unknown_papl.PeakList, am.IdentificationMethod);

            if (_target_list == null)
            {
                return(QualitativeErrorInfo.IdentifyPeakError);
            }

            //未知样定量
            _rc = CQuantificationFactory.Quantitate(_target_list, am.QuantificationMethod);

            return(_rc);
        }
示例#13
0
        /// <summary>计算峰列表中所有有效峰对应的物质的量</summary>
        /// <param name="peak_list">峰对象列表</param>
        /// <param name="capacity">物质的量</param>
        /// <returns>QualitativeErrorInfo枚举值</returns>
        public static QualitativeErrorInfo Quantitate(List <Peak> peak_list, PeakQuantificationMethod pqm)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;
            double _capacity         = 0.0;

            if (pqm.Calibration_Method != PeakQuantificationMethod.CalibrationMethod.cm_InternalStandard)
            {
                return(QualitativeErrorInfo.CalibrationMethodError);
            }

            //内标定量
            Peak _internal_standard_peak = peak_list.Find(CPeakFilter.FindInternalStandardPeak);

            //if ((_internal_standard_peak == null) || (_internal_standard_peak.AdjustFactor == 0))
            if (_internal_standard_peak == null)
            {
                return(QualitativeErrorInfo.InternalStandardError);
            }

            foreach (Peak _p in peak_list)
            {
                if (!CPeakFilter.FindCheckedPeak(_p) || ((_p.InternalStandard != null) && (_p.InternalStandard != "")))
                {
                    continue;
                }

                _capacity = 0.0;

                _rc = GetCapacity(_p, _internal_standard_peak, pqm, ref _capacity);
                if (_rc == QualitativeErrorInfo.Success)
                {
                    _p.Capacity = _capacity;
                }
            }

            return(_rc);
        }
示例#14
0
        /// <summary>计算峰信息</summary>
        /// <param name="peak">峰对象</param>
        /// <param name="dead_time">死时间</param>
        /// <param name="curve_point">峰曲线列表</param>
        /// <returns>QualitativeErrorInfo枚举</returns>
        private QualitativeErrorInfo ComputePeakInfo(Peak peak, double dead_time, List <PointF> peak_group_curve)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            if ((peak == null) || (peak_group_curve == null))
            {
                return(QualitativeErrorInfo.PeakObjectError);
            }

            List <PointF> _peak_curve = GetPeakCurve(peak, peak_group_curve);

            if (_peak_curve == null)
            {
                Debug.WriteLine("Peak_" + peak.Index + " can't be calculated !");
                return(QualitativeErrorInfo.PeakCurveError);
            }

            //计算容量因子,组分在两相中的总量之比称分配比,又称容量因子,k = (Tr - T0)/T0
            peak.CapacityFactor = (dead_time == 0) ? (-1) : ((peak.PeakPoint.X - dead_time) / dead_time);
            //计算峰面积
            peak.PeakArea = ComputePeakArea(peak, _peak_curve);
            //计算峰高
            //peak.PeakHeight = ComputePeakHeight(peak.PeakPoint, GetPeakStartPoint(peak), GetPeakEndPoint(peak));
            peak.PeakHeight = ComputePeakHeight(peak);

            peak.PeakWidth1    = peak.PeakWidth2 = peak.PeakWidth4 = -1;
            peak.PlateIdealNum = peak.PlateRealNum = -1;
            peak.TailingFactor = peak.AsymmetricDegree = -1;

            List <PointF> _point_line = GetWidthOfAnyPeakHeight(peak, _peak_curve, peak.PeakHeight / 2);

            if ((_point_line == null) || (_point_line.Count < 2))
            {
                return(QualitativeErrorInfo.ComputePeakInfoError);
            }

            //peak.PeakWidth2 = ComputeDistance(_point_line[0], _point_line[1]);
            peak.PeakWidth2 = Math.Abs(_point_line[0].X - _point_line[1].X);
            peak.PeakWidth1 = peak.PeakWidth2 * 4 / 2.35;

            _point_line = GetWidthOfAnyPeakHeight(peak, _peak_curve, peak.PeakHeight / 4);
            if ((_point_line == null) || (_point_line.Count < 2))
            {
                return(QualitativeErrorInfo.ComputePeakInfoError);
            }

            //peak.PeakWidth4 = ComputeDistance(_point_line[0], _point_line[1]);
            peak.PeakWidth4 = Math.Abs(_point_line[0].X - _point_line[1].X);

            peak.PlateIdealNum    = ComputeTheoreticalPlates(peak);
            peak.PlateRealNum     = ComputeEffectivePlates(peak, dead_time);
            peak.TailingFactor    = ComputeTailingFactor(peak, _peak_curve);
            peak.AsymmetricDegree = ComputeSymmetryFactor(peak, _peak_curve);

            #region OLD_CODE
            ////计算半高峰宽
            //peak.PeakWidth2 = (peak.PeakArea / peak.PeakHeight / 1.065);
            ////计算峰宽
            //peak.PeakWidth1 = peak.PeakWidth2 * 4 / 2.35;
            ////计算四分之一峰宽
            //double _height = Double.Parse((peak.PeakPoint.Y - peak.StartPoint.Y).ToString("f3"));
            //peak.PeakWidth4 = Double.Parse(ComputeAnyHeightWidth(_height / 4, _peak_curve, peak).ToString("f3"));
            ////计算理论塔板数
            //peak.PlateIdealNum = ComputeTheoreticalPlates(peak);
            ////计算有效塔板数
            //peak.PlateRealNum = ComputeEffectivePlates(peak, dead_time);
            ////计算拖尾因子,5%高度处全峰宽与左峰宽两倍的比值
            //peak.TailingFactor = ComputeTailingFactor(peak, peak_group_curve);
            ////计算不对称度,10%高度处左峰宽与右峰宽的比值
            //peak.AsymmetricDegree = ComputeSymmetryFactor(peak, peak_group_curve);
            #endregion

            return(_rc);
        }
示例#15
0
        private static List <Peak> GetAverStandardPeakList(List <PeakAndPointList> unknown_std_papl, List <Peak> standard_list, PeakIdentificationMethod pim, PeakQuantificationMethod pqm)
        {
            QualitativeErrorInfo _rc = QualitativeErrorInfo.Success;

            if ((unknown_std_papl == null) || (unknown_std_papl.Count == 0) || (standard_list == null) || (standard_list.Count == 0))
            {
                return(null);
            }

            int[]    _std_count = new int[standard_list.Count];
            double[] _std_rt    = new double[standard_list.Count];

            List <Peak> _aver_std_list = new List <Peak>();

            for (int i = 0; i < standard_list.Count; i++)
            {
                _std_count[i] = 0;
                _std_rt[i]    = 0;

                Peak _p = new Peak();

                _p.Name    = standard_list[i].Name;
                _p.Checked = true;
                _p.Index   = i;

                _aver_std_list.Add(_p);
            }

            foreach (PeakAndPointList _papl in unknown_std_papl)
            {
                List <Peak> _unknown_std_list = _papl.PeakList.FindAll(CPeakFilter.FindNaturalPeak);
                if (_unknown_std_list == null)
                {
                    continue;
                }

                //定性标样峰
                List <Peak> _target_list = CIdentificationFactory.Identify(standard_list, _unknown_std_list, pim);
                if (_target_list == null)
                {
                    continue;
                }

                _rc = CQuantificationFactory.GetAdjustFactor(_target_list, pqm);    //计算校正因子
                if (_rc != QualitativeErrorInfo.Success)
                {
                    continue;
                }

                foreach (Peak _p in _aver_std_list)
                {
                    foreach (Peak _p0 in _target_list)
                    {
                        if (_p.Name == _p0.Name)
                        {
                            _p.Capacity     += _p0.Capacity;
                            _p.PeakHeight   += _p0.PeakHeight;
                            _p.PeakArea     += _p0.PeakArea;
                            _p.AdjustFactor += _p0.AdjustFactor;

                            _std_count[_p.Index]++;
                            _std_rt[_p.Index] += _p0.PeakPoint.X;

                            _target_list.Remove(_p0);
                            break;
                        }
                    }
                }
            }

            foreach (Peak _p in _aver_std_list)
            {
                int _count = _std_count[_p.Index];

                _std_rt[_p.Index] /= _count;

                _p.Capacity     /= _count;
                _p.PeakHeight   /= _count;
                _p.PeakArea     /= _count;
                _p.AdjustFactor /= _count;

                _p.PeakPoint = new PointF((float)_std_rt[_p.Index], 0);
            }

            return((_aver_std_list.Count > 0) ? _aver_std_list : null);
        }