示例#1
0
        private Optional <ProgramSet> LearnChildren(PremSpec <TInput, IEnumerable <SyntaxNode> > spec)
        {
            Debug.Assert(spec.Forall((i, o) => o.Any()) && spec.Identical((i, o) => o.Count()));

            // First synthesize the first child.
            var childSpec  = spec.MapOutputs((i, o) => o.First());
            var childSpace = LearnTree(childSpec);

            if (childSpace.IsEmpty)
            {
                return(Optional <ProgramSet> .Nothing);
            }

            // Suppose no more children, then this is the base case.
            if (!spec.Forall((i, o) => o.Rest().Any()))
            {
                return(ProgramSet.Join(Op(nameof(Semantics.Child)), childSpace).Some());
            }
#if DEBUG
            Debug.Assert(spec.Forall((i, o) => o.Rest().Any()));
#endif
            // Then synthesize the rest, inductively.
            var childrenSpec  = spec.MapOutputs((i, o) => o.Rest());
            var childrenSpace = LearnChildren(childrenSpec);
            if (!childrenSpace.HasValue || childrenSpace.Value.IsEmpty)
            {
                return(Optional <ProgramSet> .Nothing);
            }

            return(ProgramSet.Join(Op(nameof(Semantics.Children)), childSpace, childrenSpace.Value).Some());
        }
示例#2
0
        private Optional <ProgramSet> LearnAppend(PremSpec <TInput, IEnumerable <SyntaxNode> > spec, int k)
        {
            Debug.Assert(spec.Forall((i, o) => o.Any()));

            // Synthesize param `frontParent`.
            var frontSpec = spec.MapOutputs((i, o) => o.DropLast(k));
            var parents   = frontSpec.MapOutputs((i, o) =>
            {
                var candidates = o.MapI((index, c) => c.MatchedParents(index));
                return(candidates.Any() ? candidates.SetIntersect() : new HashSet <SyntaxNode>());
            });

            if (parents.Forall((i, ps) => ps.Any()))
            {
#if DEBUG
                if (parents.Any((i, ps) => ps.Count > 1))
                {
                    Log.Debug("Possibly multiple ways for frontParentSpec");
                }
#endif
                var frontParentSpec = parents.MapOutputs((i, ps) => ps.First() as SyntaxNode);
#if DEBUG
                Log.Tree("front parent |- {0}", frontParentSpec);
                Log.IncIndent();
#endif
                var frontParentSpace = LearnRef(frontParentSpec);
#if DEBUG
                Log.DecIndent();
#endif
                if (frontParentSpace.IsEmpty)
                {
                    return(Optional <ProgramSet> .Nothing);
                }

                // Synthesize param `tail`.
                var childrenSpec = spec.MapOutputs((i, o) => o.Last(k));
#if DEBUG
                Log.Tree("append children |- {0}", childrenSpec);
                Log.IncIndent();
#endif
                var childrenSpace = LearnChildren(childrenSpec);
#if DEBUG
                Log.DecIndent();
#endif
                if (!childrenSpace.HasValue || childrenSpace.Value.IsEmpty)
                {
                    return(Optional <ProgramSet> .Nothing);
                }

                return(ProgramSet.Join(Op(nameof(Semantics.Append)), frontParentSpace, childrenSpace.Value).Some());
            }

            return(Optional <ProgramSet> .Nothing);
        }
示例#3
0
        private ProgramSet LearnConjunction(IEnumerable <Feature> features, IEnumerable <TInput> inputs)
        {
            var spaces = new List <ProgramSet>();

            foreach (var feature in features)
            {
                spaces.Add(ProgramSet.List(Symbol(nameof(Semantics.HasFeature)), HasFeature(feature)));
            }

            return(spaces.Aggregate1((s1, s2) => ProgramSet.Join(Op(nameof(Semantics.And)), s1, s2)));
        }
示例#4
0
        /// <summary>
        /// Learning a set of selectors that are consistent with the specification.
        /// </summary>
        /// <param name="spec">Specification of the form: input -> node to be referenced.</param>
        /// <param name="scopeSpec">Specification for learned scopes (`node`s): input -> scope root.</param>
        /// <param name="scopeSpace">The programs that construct the scope (`node`).</param>
        /// <returns>Consistent programs (if exist) or emptyset.</returns>
        private ProgramSet LearnSelect(PremSpec <TInput, SyntaxNode> spec, PremSpec <TInput, Node> scopeSpec,
                                       ProgramSet scopeSpace)
        {
            var spaces = new List <ProgramSet>();

#if DEBUG
            Log.Tree("selectors");
            Log.IncIndent();
#endif
            // Option 1: select inside one of subscope, say one of the child of the scope root.
            // REQUIRE: expected node in scope[index] for some index for all examples.
            int index;
            if (spec.Identical((i, o) => scopeSpec[i].Locate(o), out index) && index >= 0)
            {
                var indexSpace    = ProgramSet.List(Symbol("index"), Index(index));
                var subscopeSpace = ProgramSet.Join(Op(nameof(Semantics.Sub)), scopeSpace, indexSpace);
#if DEBUG
                Log.Tree("in subscope {0}", index);
                Log.IncIndent();
#endif
                spaces.Add(LearnSelectInScope(spec, scopeSpec.MapOutputs((i, o) => o.GetChild(index)), subscopeSpace));
#if DEBUG
                Log.DecIndent();
#endif
            }

            // Option 2: select inside the entire scope.
            // NO REQUIREMENT.
#if DEBUG
            Log.Tree("in entire scope");
            Log.IncIndent();
#endif
            spaces.Add(LearnSelectInScope(spec, scopeSpec.MapOutputs((i, o) => (SyntaxNode)o), scopeSpace));
#if DEBUG
            Log.DecIndent();
            Log.DecIndent();
#endif
            return(Union(spaces));
        }
        internal Optional <ProgramSet> LearnDupLet(SynthesisEngine engine, LetRule rule,
                                                   LearningTask <DisjunctiveExamplesSpec> task,
                                                   CancellationToken cancel)
        {
            var             examples = task.Spec;
            List <string[]> pathsArr = new List <string[]>();

            foreach (KeyValuePair <State, IEnumerable <object> > example in examples.DisjunctiveExamples)
            {
                State         inputState = example.Key;
                var           input      = example.Key[Grammar.InputSymbol] as MergeConflict;
                List <string> idx        = new List <string>();
                foreach (IReadOnlyList <Node> output in example.Value)
                {
                    foreach (Node n in Semantics.Concat(input.Upstream, input.Downstream))
                    {
                        bool flag = false;
                        n.Attributes.TryGetValue(Path, out string inPath);
                        foreach (Node node in output)
                        {
                            node.Attributes.TryGetValue(Path, out string outputPath);
                            if (inPath == outputPath)
                            {
                                flag = true;
                            }
                        }
                        if (!flag)
                        {
                            idx.Add(inPath);
                        }
                    }
                }

                pathsArr.Add(idx.ToArray());
            }

            pathsArr.Add(new string[1] {
                string.Empty
            });
            List <ProgramSet> programSetList = new List <ProgramSet>();

            foreach (string[] path in pathsArr)
            {
                NonterminalRule findMatchRule = Grammar.Rule(nameof(Semantics.FindMatch)) as NonterminalRule;
                ProgramSet      letValueSet   =
                    ProgramSet.List(
                        Grammar.Symbol("find"),
                        new NonterminalNode(
                            findMatchRule,
                            new VariableNode(Grammar.InputSymbol),
                            new LiteralNode(Grammar.Symbol("paths"), path)));

                var bodySpec = new Dictionary <State, IEnumerable <object> >();
                foreach (KeyValuePair <State, IEnumerable <object> > kvp in task.Spec.DisjunctiveExamples)
                {
                    State         input = kvp.Key;
                    MergeConflict x     = (MergeConflict)input[Grammar.InputSymbol];
                    List <IReadOnlyList <Node> > dupValue = Semantics.FindMatch(x, path);

                    State newState = input.Bind(rule.Variable, dupValue);
                    bodySpec[newState] = kvp.Value;
                }

                LearningTask bodyTask       = task.Clone(rule.LetBody, new DisjunctiveExamplesSpec(bodySpec));
                ProgramSet   bodyProgramSet = engine.Learn(bodyTask, cancel);

                var dupLetProgramSet = ProgramSet.Join(rule, letValueSet, bodyProgramSet);
                programSetList.Add(dupLetProgramSet);
            }

            ProgramSet ps = new UnionProgramSet(rule.Head, programSetList.ToArray());

            return(ps.Some());
        }
示例#6
0
        private ProgramSet LearnTree(PremSpec <TInput, SyntaxNode> spec)
        {
            // Case 1: leaf nodes, using `Leaf`.
            if (spec.Forall((i, o) => o is Token))
            {
#if DEBUG
                Log.Tree("Leaf |- {0}", spec);
#endif
                Label label;
                if (spec.Identical((i, o) => o.label, out label))
                {
#if DEBUG
                    Log.IncIndent();
                    Log.Tree("label = {0}", label);
#endif
                    var tokenSpace = Intersect(spec.Select(p => LearnToken(p.Key, p.Value.code)));
#if DEBUG
                    Log.DecIndent();
#endif
                    if (!tokenSpace.IsEmpty)
                    {
                        return(ProgramSet.Join(Op(nameof(Semantics.Leaf)),
                                               ProgramSet.List(Symbol("label"), Label(label)), tokenSpace));
                    }
                }
                // else: Inconsistent specification.
            }

            // Case 2: nodes/lists, copy a reference from old tree.
            if (spec.Forall((i, o) => o.matches.Any()))
            {
#if DEBUG
                Log.Tree("Copy |- {0}", spec);
                Log.IncIndent();
#endif
                var refSpecs  = spec.FlatMap((i, o) => o.matches);
                var refSpaces = new List <ProgramSet>();
#if DEBUG
                var total = refSpecs.Count();
                var count = 1;
#endif
                foreach (var refSpec in refSpecs)
                {
#if DEBUG
                    Log.Tree("{0}/{1} ref |- {2}", count, total, refSpec);
                    Log.IncIndent();
#endif
                    var space = LearnRef(refSpec);
                    if (!space.IsEmpty)
                    {
                        refSpaces.Add(space);
                        break;
                    }
#if DEBUG
                    Log.DecIndent();
                    count++;
#endif
                }
#if DEBUG
                Log.DecIndent();
#endif
                var refSpace = Union(refSpaces);
                if (!refSpace.IsEmpty)
                {
                    return(ProgramSet.Join(Op(nameof(Semantics.Copy)), refSpace));
                }
            }

            // Case 3: constructor nodes, using `Node`.
            if (spec.Forall((i, o) => o is Node))
            {
                var childrenSpace = Optional <ProgramSet> .Nothing;
#if DEBUG
                Log.Tree("Node |- {0}", spec);
#endif
                Label label;
                if (spec.Identical((i, o) => o.label, out label))
                {
                    var labelSpace   = ProgramSet.List(Symbol("Label"), Label(label));
                    var childrenSpec = spec.MapOutputs((i, o) => o.GetChildren());
#if DEBUG
                    Log.IncIndent();
                    Log.Tree("label = {0}", label);
#endif
                    int arity;
                    // Same number of children, learn one-by-one.
                    if (childrenSpec.Identical((i, cs) => cs.Count(), out arity))
                    {
#if DEBUG
                        Log.Tree("children |- {0}", childrenSpec);
                        Log.IncIndent();
#endif
                        childrenSpace = LearnChildren(childrenSpec);
#if DEBUG
                        Log.DecIndent();
#endif
                        if (childrenSpace.HasValue && !childrenSpace.Value.IsEmpty)
                        {
                            return(ProgramSet.Join(Op(nameof(Semantics.Node)),
                                                   ProgramSet.List(Symbol("label"), Label(label)), childrenSpace.Value));
                        }
                    }
                    else // Different number of children, try `Append`.
                    {
#if DEBUG
                        Log.Tree("append |- {0}", childrenSpec);
                        Log.IncIndent();
#endif
                        for (int k = 1; k <= 2; k++)
                        {
                            childrenSpace = LearnAppend(childrenSpec, k);
                            if (childrenSpace.HasValue)
                            {
                                break;
                            }
                        }
#if DEBUG
                        Log.DecIndent();
#endif
                    }
#if DEBUG
                    Log.DecIndent();
#endif
                    if (childrenSpace.HasValue && !childrenSpace.Value.IsEmpty)
                    {
                        return(ProgramSet.Join(Op(nameof(Semantics.Node)), labelSpace, childrenSpace.Value));
                    }
                }
            }

            // else: Inconsistent specification.
            return(ProgramSet.Empty(Symbol("tree")));
        }
示例#7
0
        /// <summary>
        /// Learning a set of selectors that are consistent with the specification.
        /// Similar to `LearnSelect`, but the scope has been determined (entire/sub).
        /// </summary>
        /// <param name="spec">Specification of the form: input -> node to be referenced.</param>
        /// <param name="scopeSpec">Specification for the determined scopes: input -> scope root.</param>
        /// <param name="scopeSpace">The programs that construct the scope.</param>
        /// <returns>Consistent programs (if exist) or emptyset.</returns>
        private ProgramSet LearnSelectInScope(PremSpec <TInput, SyntaxNode> spec, PremSpec <TInput, SyntaxNode> scopeSpec,
                                              ProgramSet scopeSpace)
        {
            var spaces = new List <ProgramSet>();

            // Special case: expected node is simply the scope root.
            // REQUIRE: expected node = scope[index] for all examples.
            if (spec.Forall((i, o) => o.Equals(scopeSpec[i])))
            {
#if DEBUG
                Log.Tree("itself");
#endif
                spaces.Add(scopeSpace);
                return(Union(spaces));
            }

            // General case: identify using label and feature in the subscope.
            // REQUIRE: expected node have the identical label for all examples.
            Label label;
            if (spec.Identical((i, o) => o.label, out label))
            {
                var labelSpace    = ProgramSet.List(Symbol("label"), Label(label));
                var featureSpaces = new List <ProgramSet>();
#if DEBUG
                Log.Tree("label = {0}", label);
#endif
                // When filtering using `label`, all possible nodes (expect the expected one) are its competitors.
                // Suppose for all examples, the expected node has no competitors,
                // then predicate `Phi` is not mandatory.
                if (spec.Forall((i, o) => !scopeSpec[i].GetSubtrees().Where(n => n.label.Equals(label))
                                .Except(o).Any()))
                {
#if DEBUG
                    Log.Tree("feature = true");
#endif
                    featureSpaces.Add(ProgramSet.List(Symbol(nameof(Semantics.True)), True()));
                    goto feature_space_end;
                }

                var competitors = spec.SelectMany((i, o) => scopeSpec[i].GetSubtrees()
                                                  .Where(n => n.label.Equals(label)).Except(o));
                var competitorFeatures = competitors.Select(c => c.Features());

                // Synthesize a feature predicate `Phi` s.t. for every example,
                // 1) `Phi` must hold for the expected node, and
                // 2) `Phi` must not hold for any of its competitors, i.e.
                // all nodes (expect the expected one) in the `scope` with label `label`.

                var numExamples       = spec.Count;
                var features          = spec.Values.Select(e => e.Features()).ToArray();
                var inputs            = spec.Keys.ToArray();
                var disjunctionSpaces = new List <ProgramSet>();

                // Here, we restrict `Phi` to be of the disjunctive form `phi_1 \/ ... \/ phi_k`.
                // By 2), every `phi_i` must not hold for any competitors. We will do it later.
                // By 1), for every example, there exists some `phi_i` s.t. `phi_i` holds for the expected node.
                // To achieve this, we use the following heuristic strategy: we try `k` from 1 to `numExamples`.
                // When trying `k`, examples are splitted into `k` groups, and for every examples in one group,
                // their expected node holds some `phi_i`. By disjuncting all such `phi_i`s, we get `Phi`.
                for (var k = 1; k <= Math.Min(numExamples, MAX_K); k++)
                {
                    foreach (var partition in Partitions(numExamples, k))
                    {
#if DEBUG
                        Log.Tree("partition: {0}", partition);
                        Log.IncIndent();
#endif
                        var groupSpaces = new List <ProgramSet>();
                        foreach (var group in partition)
                        {
                            // For every group of examples in the partition, we need to synthesize a consistent `phi`.
                            // Since `phi` is of the conjunctive form `varphi_1 /\ ... /\ varphi_l`.
                            // By 1), `phi` must hold for all expected nodes in the group, that is,
                            // every `varphi_i` must hold for all expected nodes.
                            // Thus, every `varphi_i` could be chosen from all common features of the expected nodes.
                            var commonFeatures = group.Select(i => features[i]).SetIntersect().ToList();
                            var groupInputs    = group.Select(i => inputs[i]);
#if DEBUG
                            Log.Tree("group {0} common features {1}", group, commonFeatures);
                            Log.IncIndent();
#endif
                            // In case no common features present, the partition fails.
                            if (!commonFeatures.Any())
                            {
#if DEBUG
                                Log.Tree("<failure>");
                                Log.DecIndent();
#endif
                                goto partition_end;
                            }
                            else
                            {
                                var conjunctionSpaces = new List <ProgramSet>();

                                // Otherwise, we try `l` from 1 to `min {|commonFeatures|, MAX_L}`.
                                for (var l = 1; l <= Math.Min(commonFeatures.Count, MAX_L); l++)
                                {
                                    if (l == 1) // Special case.
                                    {
                                        foreach (var f in commonFeatures.SetExcept(competitorFeatures))
                                        {
                                            var F = f.Yield();
#if DEBUG
                                            Log.Tree("conjunction {0}", F);
#endif
                                            conjunctionSpaces.Add(LearnConjunction(F, groupInputs));
                                        }
                                    }
                                    else
                                    {
                                        // For every possible subset `F` with size `l` of `commonFeatures,
                                        // it forms a predicate `/\_{f \in F} f`. Note that `F` already satisfies 1).
                                        foreach (var F in commonFeatures.ChooseK(l))
                                        {
                                            Debug.Assert(F.Count() <= 2,
                                                         Log.ExplicitlyFormat("Invalid element {0} when l = {1}", F, l));

                                            // Tell if it also satisfies 2), i.e. for any competitor, `F` doesn't hold.
                                            if (competitors.All(c => !c.Features().ContainsMany(F)))
                                            {
#if DEBUG
                                                Log.Tree("conjunction {0}", F);
#endif
                                                conjunctionSpaces.Add(LearnConjunction(F, groupInputs));
                                            }
                                        }
                                    }

                                    if (conjunctionSpaces.Any())
                                    {
                                        break;
                                    }
                                } // l end

                                if (conjunctionSpaces.Any())
                                {
                                    groupSpaces.Add(Union(conjunctionSpaces));
                                }
                                else
                                {
#if DEBUG
                                    Log.Tree("<failure>");
                                    Log.DecIndent();
#endif
                                    goto partition_end; // No unique features, the partition also fails.
                                }
                            }
#if DEBUG
                            Log.DecIndent();
#endif
                        } // group end

                        disjunctionSpaces.Add(groupSpaces.Aggregate1((s1, s2) =>
                                                                     ProgramSet.Join(Op(nameof(Semantics.Or)), s1, s2)));

                        partition_end :;
#if DEBUG
                        Log.DecIndent();
#endif
                    } // partitions end

                    if (disjunctionSpaces.Any())
                    {
                        break;
                    }
                } // k end

                if (disjunctionSpaces.Any())
                {
                    featureSpaces.Add(Union(disjunctionSpaces));
                }

feature_space_end:
                spaces.Add(ProgramSet.Join(Op(nameof(Semantics.Select)), scopeSpace, labelSpace, Union(featureSpaces)));
            } // if end

            return(Union(spaces));
        }
示例#8
0
        /// <summary>
        /// Learning a set of `program`s, i.e. tree transformers, that are consistent with the specification.
        /// </summary>
        /// <param name="spec">Specification of the form: input -> new tree.</param>
        /// <returns>Consistent programs (if exist) or nothing.</returns>
        private Optional <ProgramSet> LearnProgram(PremSpec <TInput, SyntaxNode> spec)
        {
            // Preparation: compute sources.
            foreach (var input in spec.Keys)
            {
                errNodes[input] = input.errNode as Leaf;
            }

            foreach (var key in spec.Keys.Select(i => i.Keys).Intersect())
            {
                var varNodes = spec.MapOutputs((i, o) => i.inputTree.Leaves()
                                               .Where(l => l.code == i[key] && i[key] != i.errNode.code).ArgMin(l => l.depth));
                if (varNodes.Forall((i, v) => v != null))
                {
                    varNodeDict[key] = varNodes;
                }
            }

            // Preparation: Before we synthesize `target`, we have to first perform a diff.
            var diffResults = spec.MapOutputs((i, o) => SyntaxNodeComparer.Diff(i.inputTree, o));
// #if DEBUG
//             var printer = new IndentPrinter();
//             foreach (var p in diffResults)
//             {
//                 Log.Fine("Diff:");
//                 p.Value.Value.Item1.PrintTo(printer);
//                 printer.PrintLine("<->");
//                 p.Value.Value.Item2.PrintTo(printer);
//             }
// #endif
            // Preparation: Before we synthesize `newTree`,
            // we have to perform matching between the old tree and the new node.
            var treeSpec = diffResults.MapOutputs((i, o) => o.Value.Item2);

            foreach (var p in treeSpec)
            {
                var matcher  = new SyntaxNodeMatcher();
                var matching = matcher.GetMatching(p.Value, p.Key.inputTree);
                foreach (var match in matching)
                {
                    match.Key.matches = new List <SyntaxNode>(match.Value);
                }
            }

            // Start synthesis.
            if (diffResults.Forall((i, o) => o.HasValue))
            {
                // 1. Synthesize param `target`.
                var        targetSpec = diffResults.MapOutputs((i, o) => o.Value.Item1);
                ProgramSet targetSpace;
#if DEBUG
                Log.Tree("target |- {0}", targetSpec);
                Log.IncIndent();
#endif
                // Special case: error node = expected output, use `Err`.
                if (targetSpec.Forall((i, o) => i.errNode.Equals(o)))
                {
#if DEBUG
                    Log.Tree("Err(old)");
#endif
                    targetSpace = ProgramSet.List(Symbol(nameof(Semantics.Err)), Err());
                }
                // General case: try `ref`.
                else
                {
                    targetSpace = LearnRef(targetSpec);
                }
#if DEBUG
                Log.DecIndent();
#endif
                if (targetSpace.IsEmpty)
                {
                    return(Optional <ProgramSet> .Nothing);
                }

                // 2. Synthesize param `tree` as the `newTree`, constructed by `New(tree)`.
#if DEBUG
                Log.Tree("tree |- {0}", treeSpec);
                Log.IncIndent();
#endif
                var treeSpace = LearnTree(treeSpec);
#if DEBUG
                Log.DecIndent();
#endif
                if (treeSpace.IsEmpty)
                {
                    return(Optional <ProgramSet> .Nothing);
                }

                // All done, return program set.
                return(ProgramSet.Join(Op(nameof(Semantics.Transform)), targetSpace,
                                       ProgramSet.Join(Op(nameof(Semantics.New)), treeSpace)).Some());
            }

            return(Optional <ProgramSet> .Nothing);
        }