public void Run() { Insert2 trainingStatus = m_predictionFramework.GetModelStatus(ProjectModelId); Console.WriteLine("Training status: {0}", trainingStatus.TrainingStatus); ToConsole(trainingStatus.ModelInfo); }
public void Run() { Console.WriteLine("Model '{0}' deleted with response '{1}'.", ProjectModelId.ModelId, m_predictionFramework.DeleteTrainedModel(ProjectModelId)); Insert2 insertResponse = m_predictionFramework.TrainRegressionModel(ProjectModelId, m_storageData); Console.WriteLine("Inserted the training data for the model."); // Wait until the training is complete bool trainingRunning = true; while (trainingRunning) { Console.WriteLine("Getting a new training progress status..."); var getResponse = m_predictionFramework.GetModelStatus(ProjectModelId); Console.WriteLine("Got a new training progress status: {0}", getResponse.TrainingStatus); switch (getResponse.TrainingStatus) { case "RUNNING": Console.WriteLine("The model training is still in progress, let us wait for {0} ms.", PROGRESS_WAITING_TIME); Thread.Sleep(PROGRESS_WAITING_TIME); break; case "DONE": Console.WriteLine("The model has been trained successfully."); ToConsole(getResponse.ModelInfo); trainingRunning = false; break; case "ERROR: TRAINING JOB NOT FOUND": throw new Exception("the training job was not found."); case "ERROR: TOO FEW INSTANCES IN DATASET": throw new Exception("there are too few instances in the dataset."); default: throw new ArgumentException("Unknown status (error): " + getResponse.TrainingStatus); } } }