public async Task <IActionResult> Edit(int id, [Bind("PowerID,PowerName")] PowerFactor powerFactor)
        {
            if (id != powerFactor.PowerID)
            {
                return(NotFound());
            }

            if (ModelState.IsValid)
            {
                try
                {
                    _context.Update(powerFactor);
                    await _context.SaveChangesAsync();
                }
                catch (DbUpdateConcurrencyException)
                {
                    if (!PowerFactorExists(powerFactor.PowerID))
                    {
                        return(NotFound());
                    }
                    else
                    {
                        throw;
                    }
                }
                return(RedirectToAction(nameof(Index)));
            }
            return(View(powerFactor));
        }
        public async Task <IActionResult> Create([Bind("PowerID,PowerName")] PowerFactor powerFactor)
        {
            if (ModelState.IsValid)
            {
                _context.Add(powerFactor);
                await _context.SaveChangesAsync();

                return(RedirectToAction(nameof(Index)));
            }
            return(View(powerFactor));
        }
示例#3
0
        /// <summary>
        /// 计算稳态子通道流量场,使用节点压力迭代,即用压力平衡思想考虑横向流动
        /// </summary>
        /// <param name="coolent">冷却剂</param>
        /// <param name="channels">通道集合</param>
        /// <param name="rods">燃料棒集合</param>
        /// <param name="massFlow">质量流速对象</param>
        /// <param name="Ni">通道数</param>
        /// <param name="Nj">轴向分段数</param>
        /// <param name="totalArea">总流通面积</param>
        /// <param name="options">计算选项</param>
        /// <returns></returns>
        public List <ChannelFlow> Caculate_Channels_Steady_NodeIteration(
            Fluid coolent,
            List <Channel> channels,
            List <Rod> rods,
            MassFlow massFlow,
            int Ni, int Nj,
            double totalArea,
            Options options)
        {
            ///使用压力迭代方法确定不同子通道之间的流量,此计算方法使用压力迭代确定
            ///
            Main.MsgCenter.ShowMessage("计算子通道数据,流量计算方式压力迭代:节点迭代...");
            //初始化输出结果
            List <ChannelFlow> channelsFlow = new List <ChannelFlow>();

            for (int i = 0; i < Ni; i++)
            {
                ChannelFlow channelFlow = new ChannelFlow
                {
                    //流动计算结果 编号与输入的子通道编号相对应
                    ChannelIndex = channels[i].Index,
                    FluidDatas   = new List <FluidData>()
                };
                for (int j = 0; j < Nj + 1; j++)
                {
                    channelFlow.FluidDatas.Add(new FluidData());
                }
                channelsFlow.Add(channelFlow);
            }
            //迭代的限制参数
            Iteration iteration = options.Iteration;
            //功率的乘子
            PowerFactor powerFactor = options.PowerFactor;
            //计算的准确度
            Precision acc = options.Precision;
            //CHF公式选取
            CHF_Formula_Types chf_formula = options.DNBR_Formula;
            //流动方向(-1~1)
            double flow_direction = massFlow.Flow_Direction;

            //质量流量迭代
            var MassFlowRate = Matrix <double> .Build.Dense(Nj + 1, Ni, 0);

            //每个子通道的分段压降,Ni行xNj列初值为0
            var P_Local = Matrix <double> .Build.Dense(Nj + 1, Ni, 0);

            //压降迭代因子
            double Sigma = 0;

            //质量流速迭代中间变量
            double[] m = new double[Ni];
            //质量流速迭代中间变量
            double[] velocity = new double[Ni];
            //质量流速迭代中间变量
            double[] DeltaP = new double[Nj];
            //遍历所有子通道
            for (int i = 0; i < Ni; i++)
            {
                //初始化j=0入口节点
                FluidData InitNode = SetInitNode(coolent, totalArea, channels[i], massFlow, acc);
                //初始化子通道数据节点加入
                channelsFlow[i].FluidDatas[0] = InitNode;
                //局部压力场矩阵(Mpa)
                P_Local[0, i] = InitNode.Pressure;
                //质量流速kg/s 迭代用)
                m[i] = InitNode.MassFlowRate;
                //流速m/s(迭代用)
                velocity[i] = InitNode.Velocity;
                //质量流速矩阵(输出用)
                MassFlowRate[0, i] = m[i];
            }
            //轴向迭代
            for (int j = 1; j < Nj + 1; j++)
            {
                //迭代次数
                int iteration_times = 0;
                do
                {
                    //计算所有燃料棒j段(J=1~Nj-1)
                    for (int i = 0; i < Ni; i++)
                    {
                        //计算当前段的长度j>=1
                        double Lj = rods[0].SubPowerCollection[j - 1].To - rods[0].SubPowerCollection[j - 1].From;
                        //前一个节点
                        FluidData pre = channelsFlow[i].FluidDatas[j - 1];
                        //当前子通道燃料棒功率输出
                        double SubPowerJ = 0;
                        //遍历所有燃料棒
                        foreach (Rod rod in rods)
                        {
                            //燃料棒所有接触的通道
                            foreach (var ContactedChannel in rod.ContactedChannel)
                            {
                                //如果与燃料棒接触的通道,如果是当前正在计算的通道
                                if (ContactedChannel.Index == channels[i].Index)
                                {
                                    SubPowerJ += rod.SubPowerCollection[j - 1].Value * ContactedChannel.Angle / 360;
                                }
                            }
                        }
                        //乘以功率因子
                        SubPowerJ = SubPowerJ * powerFactor.Multiplier;
                        //计算新节点,NodeToNext计算子通道节点
                        FluidData next = NodeToNext(
                            coolent,
                            pre,
                            channels[i],
                            Lj,
                            SubPowerJ,
                            m[i],
                            acc,
                            out double DeltaPij,
                            chf_formula,
                            flow_direction);
                        //迭代中间变量赋值
                        DeltaP[i] = DeltaPij;
                        //存储计算结果
                        channelsFlow[i].FluidDatas[j] = next;
                        //i棒j段压降
                        P_Local[j, i] = next.Pressure;
                        //质量流速
                        MassFlowRate[j, i] = m[i];
                    }

                    //初始化迭代收敛因子
                    Sigma = 0;
                    //平均压降
                    double AvgPressure = 0;
                    for (int i = 0; i < Ni; i++)
                    {
                        AvgPressure += DeltaP[i];
                    }
                    //平均压降
                    AvgPressure = AvgPressure / Ni;
                    // 所有偏差之和
                    for (int i = 0; i < Ni; i++)
                    {
                        Sigma += Math.Abs(DeltaP[i] - AvgPressure);
                    }
                    //总质量流速
                    double TotalM = 0;
                    for (int i = 0; i < Ni; i++)
                    {
                        //子通道i压降和平均压降的比值
                        double Factor = (1 - DeltaP[i] / AvgPressure) * 0.1;
                        //重新分配压降
                        m[i] = m[i] + m[i] * Factor;

                        TotalM += m[i];

                        Debug.WriteLine(String.Format("因子{0}:", Factor));
                    }
                    //计算平衡后与平衡前的比值
                    double k = massFlow.MassVelocity / TotalM;
                    //保持总质量流速不变
                    for (int i = 0; i < Ni; i++)
                    {
                        //对质量流量进行修正
                        m[i] = k * m[i];
                        Debug.WriteLine(String.Format("通道{0}压降{1}Pa", i, DeltaP[i]));
                    }
                    Debug.WriteLine("=========================================");
                    //迭代压降
                    iteration_times += 1;
                    Main.MsgCenter.ShowMessage(String.Format("压力迭代次数:{0}", iteration_times));
                    if (iteration_times > iteration.MaxIteration)
                    {
                        Main.MsgCenter.ShowMessage(String.Format("超过最大迭代次数限制,最大迭代次数限制{0}", iteration.MaxIteration));
                        break;
                    }
                }while (Sigma > iteration.Sigma);
                //循环每个通道
                Main.MsgCenter.ShowMessage(String.Format("Sigma->{0}", Sigma));
            }
            //信息输出
            Main.MsgCenter.ShowMessage("--------压力场预览--------");
            Main.MsgCenter.ShowMessage(P_Local.ToMatrixString(Nj + 1, Ni));
            Main.MsgCenter.ShowMessage("--------流量场预览--------");
            Main.MsgCenter.ShowMessage(MassFlowRate.ToMatrixString(Nj + 1, Ni));

            return(channelsFlow);
        }
示例#4
0
        /// <summary>
        /// 计算稳态子通道流量场,使用进出口压力迭代,即不考虑横向流动
        /// </summary>
        /// <param name="coolent">冷却剂</param>
        /// <param name="channels">通道集合</param>
        /// <param name="rods">燃料棒集合</param>
        /// <param name="massFlow">质量流速对象</param>
        /// <param name="Ni">通道数</param>
        /// <param name="Nj">轴向分段数</param>
        /// <param name="totalArea">总流通面积</param>
        /// <param name="options">计算选项</param>
        /// <returns></returns>
        public List <ChannelFlow> Caculate_Channels_Steady_IOIteration(
            Fluid coolent,
            List <Channel> channels,
            List <Rod> rods,
            MassFlow massFlow,
            int Ni, int Nj,
            double totalArea,
            Options options)
        {
            ///使用压力迭代方法确定稳态不同子通道之间的流量,此计算方法使用压力迭代确定
            ///一些局部变量
            ///

            //初始化输出结果
            List <ChannelFlow> channelsFlow = new List <ChannelFlow>();

            for (int i = 0; i < Ni; i++)
            {
                ChannelFlow channelFlow = new ChannelFlow
                {
                    //流动计算结果 编号与输入的子通道编号相对应
                    ChannelIndex = channels[i].Index,
                    FluidDatas   = new List <FluidData>()
                };
                for (int j = 0; j < Nj + 1; j++)
                {
                    channelFlow.FluidDatas.Add(new FluidData());
                }
                channelsFlow.Add(channelFlow);
            }
            //迭代的限制参数
            Iteration iteration = options.Iteration;
            //功率的乘子
            PowerFactor powerFactor = options.PowerFactor;
            //计算的准确度
            Precision acc = options.Precision;
            //CHF公式选取
            CHF_Formula_Types chf_formula = options.DNBR_Formula;
            //流动方向(-1~1)
            double flow_direction = massFlow.Flow_Direction;

            //压降迭代,每个子通道的压降
            double[] DeltaP = new double[Ni];
            //压降迭代,每个子通道的压降
            double[] m = new double[Ni];
            //每个子通道的分段压降,Ni行xNj列初值为0
            Matrix <double> P_Local = Matrix <double> .Build.Dense(Nj + 1, Ni, 0);

            //压降迭代收敛因子
            double Sigma = 0;
            //迭代次数统计
            int iteration_times = 0;

            //迭代压降
            do
            {
                //遍历子通道
                for (int i = 0; i < Ni; i++)
                {
                    //初始化压降
                    DeltaP[i] = 0;
                    //初始化子通道入口数据节点
                    FluidData InitNode = SetInitNode(coolent, totalArea, channels[i], massFlow, acc);
                    //初始化子通道数据节点加入
                    channelsFlow[i].FluidDatas[0] = InitNode;
                    //局部压力场矩阵
                    P_Local[0, i] = InitNode.Pressure;
                    if (iteration_times <= 1)
                    {
                        //质量流速
                        m[i] = InitNode.MassFlowRate;
                    }
                    //每个通道数据节点(共Nj+1个,初始节点1个,循环Nj个)
                    for (int j = 1; j < Nj + 1; j++)
                    {
                        //计算当前段的长度j>=1
                        double Lj = rods[0].SubPowerCollection[j - 1].To - rods[0].SubPowerCollection[j - 1].From;
                        //前一个节点
                        FluidData pre = channelsFlow[i].FluidDatas[j - 1];
                        //当前子通道燃料棒功率输出
                        double SubPowerJ = 0;
                        //遍历所有燃料棒
                        foreach (Rod rod in rods)
                        {
                            //燃料棒所有接触的通道
                            foreach (var ContactedChannel in rod.ContactedChannel)
                            {
                                //如果与燃料棒接触的通道,如果是当前正在计算的通道
                                if (ContactedChannel.Index == channels[i].Index)
                                {
                                    SubPowerJ += rod.SubPowerCollection[j - 1].Value * ContactedChannel.Angle / 360;
                                }
                            }
                        }
                        //乘以功率因子
                        SubPowerJ = SubPowerJ * powerFactor.Multiplier;
                        //计算新节点,NodeToNext计算子通道节点
                        FluidData next = NodeToNext(
                            coolent,
                            pre,
                            channels[i],
                            Lj,
                            SubPowerJ,
                            m[i],
                            acc,
                            out double DeltaPij,
                            chf_formula,
                            flow_direction);
                        //存储计算结果
                        channelsFlow[i].FluidDatas[j] = next;
                        //i棒j段压降
                        P_Local[j, i] = next.Pressure;
                        //压降用于迭代
                        DeltaP[i] += DeltaPij;
                    }
                }
                //初始化迭代收敛因子Sigma
                Sigma = 0;
                //平均压降
                double AvgPressure = 0;
                for (int i = 0; i < Ni; i++)
                {
#if DEBUG
                    Main.MsgCenter.ShowMessage(String.Format("通道{0}压降:{1}", i, DeltaP[i]));
#endif
                    AvgPressure += DeltaP[i];
                }
                //平均压降
                AvgPressure = AvgPressure / Ni;
                //所有偏差之和
                for (int i = 0; i < Ni; i++)
                {
                    Sigma += Math.Abs(DeltaP[i] - AvgPressure);
                }
                double TotalM = 0;
                for (int i = 0; i < Ni; i++)
                {
                    //子通道i压降和平均压降的比值
                    double Factor = Math.Sqrt(AvgPressure / DeltaP[i]);
                    //重新分配压降
                    m[i] = Factor * m[i]; // 所有偏差之和
                                          //计算平衡后的总质量流速
                    TotalM += m[i];
                }
                //计算平衡后与平衡前的比值
                double k = massFlow.MassVelocity / TotalM;
                //对质量流量进行修正,保持总质量流速不变
                for (int i = 0; i < Ni; i++)
                {
                    m[i] = k * m[i];
#if DEBUG
                    Main.MsgCenter.ShowMessage(String.Format("通道{0}质量流速:{1}", i, m[i]));
#endif
                }
                //输出迭代收敛因子
                Main.MsgCenter.ShowMessage(String.Format("Sigma->{0}", Sigma));
                //迭代次数+1
                iteration_times += 1;
                Main.MsgCenter.ShowMessage(String.Format("压力迭代次数:{0}", iteration_times));
                if (iteration_times > iteration.MaxIteration)
                {
                    Main.MsgCenter.ShowMessage(String.Format("超过最大迭代次数限制,最大迭代次数限制{0}", iteration.MaxIteration));
                    break;
                }
            }while (Sigma > iteration.Sigma);



            // MyIOManager.OutputData.SteadyResult.ChannelsFlow = ChannelsFlow;
            //信息输出
            Main.MsgCenter.ShowMessage("--------压力场预览--------");
            Main.MsgCenter.ShowMessage(P_Local.ToMatrixString(Nj + 1, Ni));

            Main.MsgCenter.ShowMessage("--------流量场预览--------");
            var MassFlowRate = Matrix <double> .Build.Dense(Nj + 1, Ni, (Mi, Mj) => m[Mj]);

            Main.MsgCenter.ShowMessage(MassFlowRate.ToMatrixString(Nj + 1, Ni));

            return(channelsFlow);
        }