示例#1
0
        public IntcodeResult Run()
        {
            while (_memory[_index] != HaltCode)
            {
                var op = _memory[_index];
                var(opCode, parameterModes) = ParseOperation(op);

                if (validInstructions.TryGetValue(opCode, out var instruction))
                {
                    if (opCode == OpCodes.Read && Input.Count == 0)
                    {
                        return(IntcodeResult.HALT_FORINPUT);
                    }

                    var @params = GetParameters(instruction.Parameters, parameterModes);
                    instruction.RunInstruction(@params, this);

                    if (opCode == OpCodes.Write)
                    {
                        OutputWritten?.Invoke(this, EventArgs.Empty);
                    }
                }
                else
                {
                    throw new InvalidOperationException($"Invalid op code: {opCode}");
                }
            }

            if (Output.Count == 0)
            {
                Output.Enqueue(_memory[0]);
            }

            return(IntcodeResult.HALT_TERMINATE);
        }
示例#2
0
        /// <summary>
        ///   Creates a new <see cref="_ltsMin" /> process instance that checks the <paramref name="modelFile" />.
        /// </summary>
        /// <param name="modelFile">The model that should be checked.</param>
        /// <param name="checkArgument">The argument passed to LtsMin that indicates which kind of check to perform.</param>
        private void CreateProcess(string modelFile, string checkArgument)
        {
            Requires.That(_ltsMin == null, "An instance of LtsMin is already running.");

            var loaderAssembly = Path.Combine(Environment.CurrentDirectory, "SafetySharp.LtsMin.dll");

            _ltsMin = new ExternalProcess(
                fileName: "pins2lts-seq.exe",
                commandLineArguments: $"--loader=\"{loaderAssembly}\" \"{modelFile}\" {checkArgument}",
                outputCallback: output => OutputWritten?.Invoke(output))
            {
                WorkingDirectory = Environment.CurrentDirectory
            };
        }
示例#3
0
        /// <summary>
        ///   Runs the <see cref="_ltsMin" /> process instance.
        /// </summary>
        private void Run()
        {
            var stopwatch = new Stopwatch();

            stopwatch.Start();

            _ltsMin.Run();

            stopwatch.Stop();

            OutputWritten?.Invoke(String.Empty);
            OutputWritten?.Invoke("=====================================");
            OutputWritten?.Invoke($"Elapsed time: {stopwatch.Elapsed}");
            OutputWritten?.Invoke("=====================================");
            OutputWritten?.Invoke(String.Empty);
        }
示例#4
0
        /// <summary>
        ///   Checks the invariant encoded into the model created by <paramref name="createModel" />.
        /// </summary>
        internal AnalysisResult CheckInvariant(Func <RuntimeModel> createModel)
        {
            Requires.That(IntPtr.Size == 8, "Model checking is only supported in 64bit processes.");

            var stopwatch = new Stopwatch();

            stopwatch.Start();

            using (var checker = new InvariantChecker(createModel, message => OutputWritten?.Invoke(message), Configuration))
            {
                var result             = default(AnalysisResult);
                var initializationTime = stopwatch.Elapsed;
                stopwatch.Restart();

                try
                {
                    result = checker.Check();
                    return(result);
                }
                finally
                {
                    stopwatch.Stop();

                    if (!Configuration.ProgressReportsOnly)
                    {
                        OutputWritten?.Invoke(String.Empty);
                        OutputWritten?.Invoke("===============================================");
                        OutputWritten?.Invoke($"Initialization time: {initializationTime}");
                        OutputWritten?.Invoke($"Model checking time: {stopwatch.Elapsed}");
                        OutputWritten?.Invoke($"{(int)(result.StateCount / stopwatch.Elapsed.TotalSeconds):n0} states per second");
                        OutputWritten?.Invoke($"{(int)(result.TransitionCount / stopwatch.Elapsed.TotalSeconds):n0} transitions per second");
                        OutputWritten?.Invoke("===============================================");
                        OutputWritten?.Invoke(String.Empty);
                    }
                }
            }
        }
示例#5
0
        /// <summary>
        ///   Computes the minimal critical sets for the <paramref name="hazard" />.
        /// </summary>
        /// <param name="createModel">The creator for the model that should be checked.</param>
        /// <param name="hazard">The hazard the minimal critical sets should be computed for.</param>
        /// <param name="maxCardinality">
        ///   The maximum cardinality of the fault sets that should be checked. By default, all minimal
        ///   critical fault sets are determined.
        /// </param>
        public SafetyAnalysisResults <TExecutableModel> ComputeMinimalCriticalSets(CoupledExecutableModelCreator <TExecutableModel> createModel, Formula hazard, int maxCardinality = Int32.MaxValue)
        {
            Requires.NotNull(createModel, nameof(createModel));
            Requires.NotNull(hazard, nameof(hazard));

            ConsoleHelpers.WriteLine("Running Deductive Cause Consequence Analysis.");

            var heuristicWatch = new Stopwatch();
            var stopwatch      = new Stopwatch();

            stopwatch.Start();

            var allFaults = createModel.FaultsInBaseModel;

            FaultSet.CheckFaultCount(allFaults.Length);

            var forcedFaults           = allFaults.Where(fault => fault.Activation == Activation.Forced).ToArray();
            var suppressedFaults       = allFaults.Where(fault => fault.Activation == Activation.Suppressed).ToArray();
            var nondeterministicFaults = allFaults.Where(fault => fault.Activation == Activation.Nondeterministic).ToArray();
            var nonSuppressedFaults    = allFaults.Where(fault => fault.Activation != Activation.Suppressed).ToArray();

            ConsoleHelpers.WriteLine();
            ConsoleHelpers.WriteLine($"Of the {allFaults.Length} faults contained in the model,");
            ConsoleHelpers.WriteLine($"   {suppressedFaults.Length} faults are suppressed,");
            ConsoleHelpers.WriteLine($"   {forcedFaults.Length} faults are forced, and");
            ConsoleHelpers.WriteLine($"   {nondeterministicFaults.Length} faults are nondeterministically activated.");
            ConsoleHelpers.WriteLine();

            _suppressedSet = new FaultSet(suppressedFaults);
            _forcedSet     = new FaultSet(forcedFaults);

            var isComplete = true;

            // Remove information from previous analyses
            Reset(createModel.FaultsInBaseModel);

            // Initialize the backend, the model, and the analysis results
            switch (Backend)
            {
            case SafetyAnalysisBackend.FaultOptimizedOnTheFly:
                _backend = new FaultOptimizationBackend <TExecutableModel>();
                break;

            case SafetyAnalysisBackend.FaultOptimizedStateGraph:
                _backend = new StateGraphBackend <TExecutableModel>();
                break;

            default:
                throw new ArgumentOutOfRangeException();
            }

            _backend.OutputWritten += output => OutputWritten?.Invoke(output);
            _backend.InitializeModel(Configuration, createModel, hazard);
            _results = new SafetyAnalysisResults <TExecutableModel>(createModel, hazard, suppressedFaults, forcedFaults, Heuristics, FaultActivationBehavior);

            // Remember all safe sets of current cardinality - we need them to generate the next power set level
            var currentSafe = new HashSet <FaultSet>();

            // We check fault sets by increasing cardinality; this is, we check the empty set first, then
            // all singleton sets, then all sets with two elements, etc. We don't check sets that we
            // know are going to be critical sets due to monotonicity
            for (var cardinality = 0; cardinality <= nonSuppressedFaults.Length; ++cardinality)
            {
                // Generate the sets for the current level that we'll have to check
                var sets = GeneratePowerSetLevel(cardinality, nonSuppressedFaults, currentSafe);
                currentSafe.Clear();

                // Remove all sets that conflict with the forced or suppressed faults; these sets are considered to be safe.
                // If no sets remain, skip to the next level
                sets = RemoveInvalidSets(sets, currentSafe);
                if (sets.Count == 0)
                {
                    continue;
                }

                // Abort if we've exceeded the maximum fault set cardinality; doing the check here allows us
                // to report the analysis as complete if the maximum cardinality is never reached
                if (cardinality > maxCardinality)
                {
                    isComplete = false;
                    break;
                }

                if (cardinality == 0)
                {
                    ConsoleHelpers.WriteLine("Checking the empty fault set...");
                }
                else
                {
                    ConsoleHelpers.WriteLine($"Checking {sets.Count} sets of cardinality {cardinality}...");
                }

                // use heuristics
                var setsToCheck = new LinkedList <FaultSet>(sets);
                foreach (var heuristic in Heuristics)
                {
                    var count = setsToCheck.Count;

                    heuristicWatch.Restart();
                    heuristic.Augment((uint)cardinality, setsToCheck);

                    count = setsToCheck.Count - count;
                    if (count > 0)
                    {
                        ConsoleHelpers.WriteLine($"    {heuristic.GetType().Name} made {count} suggestions in {heuristicWatch.Elapsed.TotalMilliseconds}ms.");
                    }
                }

                // We have to check each set - heuristics may add further during the loop
                while (setsToCheck.Count > 0)
                {
                    var set = setsToCheck.First.Value;

                    var isCurrentLevel = sets.Remove(set);                     // returns true if set was actually contained
                    setsToCheck.RemoveFirst();

                    // for current level, we already know the set is valid
                    var isValid = isCurrentLevel || IsValid(set);

                    // the set is invalid if it exceeds the maximum cardinality level
                    isValid &= set.Cardinality <= maxCardinality;

                    var isSafe = true;
                    if (isValid)
                    {
                        isSafe = CheckSet(set, allFaults, !isCurrentLevel);
                    }

                    if (isSafe && isCurrentLevel)
                    {
                        currentSafe.Add(set);
                    }

                    // inform heuristics about result and give them the opportunity to add further sets
                    foreach (var heuristic in Heuristics)
                    {
                        heuristic.Update(setsToCheck, set, isSafe);
                    }

                    if (StopOnFirstException && _exceptions.Count > 0)
                    {
                        goto returnResult;
                    }
                }

                // in case heuristics removed a set (they shouldn't)
                foreach (var set in sets)
                {
                    var isSafe = CheckSet(set, allFaults, false);
                    if (isSafe)
                    {
                        currentSafe.Add(set);
                    }

                    if (StopOnFirstException && _exceptions.Count > 0)
                    {
                        goto returnResult;
                    }
                }
            }

returnResult:

            // Reset the nondeterministic faults so as to not influence subsequent analyses
            foreach (var fault in nondeterministicFaults)
            {
                fault.Activation = Activation.Nondeterministic;
            }

            // due to heuristics usage, we may have informatiuon on non-minimal critical sets
            var minimalCritical = RemoveNonMinimalCriticalSets();

            _results.IsComplete = isComplete;
            _results.Time       = stopwatch.Elapsed;
            _results.SetResult(minimalCritical, _checkedSetCount, _checkedSets, _counterExamples, _exceptions);

            return(_results);
        }
 /// <summary>
 ///   Raises the <see cref="OutputWritten" /> for the generated <paramref name="output" />.
 /// </summary>
 /// <param name="output">The output the event should be raised for.</param>
 protected void OnOutputWritten(string output)
 {
     OutputWritten?.Invoke(output);
 }