public void OrderFindTest() { long x = 2; long n = 3; int r = 2; // 2 ^ 2 = 3 + 1 int l = n.BitsCeiling(); int t = OrderFindingTransform.GetPercision(n); var regs = OrderFindingTransform.Registers(t, l).ToArray(); IUnitaryTransform orderfinder = OrderFindingTransform.Get(x, n, t); var regTwo = MultiQubit.BasisVector(1, l); var regOne = new MultiQubit(Enumerable.Range(0, t).Select(i => Qubit.ClassicZero).ToArray()); var input = new MultiQubit(regOne, regTwo); IQuantumState res = orderfinder.Transform(input); string inputStr = input.Print(regs); inputStr.Should().Be("+1.00|0>|1>"); string outStr = res.Print(regs); // all first register options evenly divide 2^t and reduce to fractiosn // with a denominator of r = 2 // in this case 0 and 32 over 2^6 equal 0 and 1/2 // therefore answer is 2 outStr.Should().Be("+0.50|0>|1>+0.50|0>|2>+0.50|32>|1>+-0.50|32>|2>"); }
public void OrderFindSimTest() { long x = 2; long n = 3; int r = 2; // 2 ^ 2 = 3 + 1 int l = n.BitsCeiling(); int t = OrderFindingTransform.GetPercision(n); var regs = OrderFindingTransform.Registers(t, l).ToArray(); IUnitaryTransform orderfinder = OrderFindingTransform.Get(x, n, t); var regTwo = MultiQubit.BasisVector(1, l); var regOne = new MultiQubit(Enumerable.Range(0, t).Select(i => Qubit.ClassicZero).ToArray()); var input = new MultiQubit(regOne, regTwo); var sim = new QuantumSim(orderfinder, regs); var res = sim.Simulate(input); res.First().Value.Should().BeOneOf(0, 32); }