private void SaveAsOnnxCore(OnnxContext ctx, string srcVariableName, string dstVariableName)
            {
                const int minimumOpSetVersion = 10;

                ctx.CheckOpSetVersion(minimumOpSetVersion, LoaderSignature);

                // StringNormalizer only takes input of shapes [C] or [1,C],
                // so the input is squeezed to support inferred shapes ( e.g. [-1,C] ).
                var opType        = "Squeeze";
                var squeezeOutput = ctx.AddIntermediateVariable(null, "SqueezeOutput", true);
                var node          = ctx.CreateNode(opType, srcVariableName, squeezeOutput, ctx.GetNodeName(opType), "");

                node.AddAttribute("axes", new long[] { 1 });

                opType = "StringNormalizer";
                var normalizerOutput = ctx.AddIntermediateVariable(null, "NormalizerOutput", true);

                node = ctx.CreateNode(opType, squeezeOutput, normalizerOutput, ctx.GetNodeName(opType), "");
                var isCaseChange = (_parent._caseMode == TextNormalizingEstimator.CaseMode.Lower) ? "LOWER" :
                                   (_parent._caseMode == TextNormalizingEstimator.CaseMode.Upper) ? "UPPER" : "NONE";

                node.AddAttribute("case_change_action", isCaseChange);

                opType = "Unsqueeze";
                node   = ctx.CreateNode(opType, normalizerOutput, dstVariableName, ctx.GetNodeName(opType), "");
                node.AddAttribute("axes", new long[] { 1 });
            }
示例#2
0
            private void SaveAsOnnxCore(OnnxContext ctx, int iinfo, string srcVariableName, string dstVariableName)
            {
                const int minimumOpSetVersion = 9;

                ctx.CheckOpSetVersion(minimumOpSetVersion, LoaderSignature);

                var model     = _parent._models[iinfo];
                int dimension = _srcTypes[iinfo].GetValueCount();

                Host.Assert(model.Length == dimension * dimension);

                var parameters = _parent._columns[iinfo];

                Host.Assert(parameters.Kind == WhiteningKind.PrincipalComponentAnalysis || parameters.Kind == WhiteningKind.ZeroPhaseComponentAnalysis);

                int rank = (parameters.Kind == WhiteningKind.PrincipalComponentAnalysis && parameters.Rank > 0) ? parameters.Rank : dimension;

                Host.CheckParam(rank <= dimension, nameof(rank), "Rank must be at most the dimension of untransformed data.");

                long[] modelDimension = { rank, dimension };

                var opType        = "Gemm";
                var modelName     = ctx.AddInitializer(model.Take(rank * dimension), modelDimension, "model");
                var zeroValueName = ctx.AddInitializer((float)0);

                var gemmOutput = ctx.AddIntermediateVariable(null, "GemmOutput", true);
                var node       = ctx.CreateNode(opType, new[] { modelName, srcVariableName, zeroValueName }, new[] { gemmOutput }, ctx.GetNodeName(opType), "");

                node.AddAttribute("transB", 1);

                opType = "Transpose";
                ctx.CreateNode(opType, new[] { gemmOutput }, new[] { dstVariableName }, ctx.GetNodeName(opType), "");
            }
            private void SaveAsOnnxCore(OnnxContext ctx, int iinfo, string srcVariableName, string dstVariableName)
            {
                const int minimumOpSetVersion = 9;

                ctx.CheckOpSetVersion(minimumOpSetVersion, LoaderSignature);

                string       opType = "Tokenizer";
                DataViewType dataViewType;

                if (_isSourceVector[iinfo])
                {
                    dataViewType = new VectorDataViewType(TextDataViewType.Instance, _sourceVectorLength[iinfo]);
                }
                else
                {
                    dataViewType = TextDataViewType.Instance;
                }

                string tokenizerOutput = ctx.AddIntermediateVariable(dataViewType, "TokenizerOutput", true);
                var    node            = ctx.CreateNode(opType, srcVariableName, tokenizerOutput, ctx.GetNodeName(opType), "com.microsoft");

                node.AddAttribute("mark", _parent._useMarkerChars);
                node.AddAttribute("mincharnum", 1);
                node.AddAttribute("pad_value", "");
                node.AddAttribute("separators", new string[] { "" });

                opType = "Squeeze";
                var squeezeOutput = ctx.AddIntermediateVariable(dataViewType, "SqueezeOutput");

                node = ctx.CreateNode(opType, tokenizerOutput, squeezeOutput, ctx.GetNodeName(opType), "");
                node.AddAttribute("axes", new long[] { 1 });

                opType = "LabelEncoder";
                var labelEncoderOutput = ctx.AddIntermediateVariable(NumberDataViewType.Int64, "LabelEncoderOutput");

                node = ctx.CreateNode(opType, squeezeOutput, labelEncoderOutput, ctx.GetNodeName(opType));

                IEnumerable <string> charStrings = Enumerable.Range(0, 65535).Select(x => ((char)x).ToString());
                IEnumerable <long>   charValues  = Enumerable.Range(0, 65535).Select(x => Convert.ToInt64(x));

                node.AddAttribute("keys_strings", charStrings);
                node.AddAttribute("values_int64s", charValues);

                opType = "Cast";
                var castNode = ctx.CreateNode(opType, labelEncoderOutput, dstVariableName, ctx.GetNodeName(opType), "");
                var t        = InternalDataKindExtensions.ToInternalDataKind(DataKind.UInt16).ToType();

                castNode.AddAttribute("to", t);
            }
示例#4
0
        bool ISingleCanSaveOnnx.SaveAsOnnx(OnnxContext ctx, string[] outputNames, string featureColumn)
        {
            const int minimumOpSetVersion = 9;

            ctx.CheckOpSetVersion(minimumOpSetVersion, LoaderSignature);

            // Mapping score to prediction
            var fastTreeOutput = ctx.AddIntermediateVariable(null, "FastTreeOutput", true);

            base.SaveAsOnnx(ctx, new[] { fastTreeOutput }, featureColumn);
            var opType = "Exp";

            ctx.CreateNode(opType, new[] { fastTreeOutput }, outputNames, ctx.GetNodeName(opType), "");
            return(true);
        }
示例#5
0
            public void SaveAsOnnx(OnnxContext ctx)
            {
                const int minimumOpSetVersion = 9;

                ctx.CheckOpSetVersion(minimumOpSetVersion, LoaderSignature);

                var outputToInputMap = _mapper.OutputToInputMap;

                for (int i = 0; i < outputToInputMap.Length; i++)
                {
                    var srcCol = InputSchema[outputToInputMap[i]];
                    var dstCol = OutputSchema[i];
                    if (!ctx.ContainsColumn(srcCol.Name) || dstCol.IsHidden)
                    {
                        continue;
                    }

                    var    srcVariable = ctx.GetVariableName(srcCol.Name);
                    var    dstVariable = ctx.AddIntermediateVariable(dstCol.Type, dstCol.Name);
                    string opType      = "Identity";
                    ctx.CreateNode(opType, srcVariable, dstVariable, ctx.GetNodeName(opType), "");
                }
            }
示例#6
0
        private bool SaveAsOnnxCore(OnnxContext ctx, string srcVariableName, DataViewType columnType)
        {
            const int minimumOpSetVersion = 9;

            ctx.CheckOpSetVersion(minimumOpSetVersion, LoaderSignature);

            Type type = columnType.RawType;

            int size;

            if (columnType is VectorDataViewType && columnType.IsKnownSizeVector())
            {
                size = columnType.GetVectorSize();
            }
            else
            {
                size = 1;
            }

            if ((type == typeof(int)) ||
                (type == typeof(short)) || (type == typeof(ushort)) ||
                (type == typeof(sbyte)) || (type == typeof(byte)))
            {
                ctx.AddInitializer(new int[size], type, new long[] { 1, size }, srcVariableName, false);
            }
            else if (type == typeof(uint) || (type == typeof(ulong)))
            {
                ctx.AddInitializer(new ulong[size], type == typeof(ulong), new long[] { 1, size }, srcVariableName, false);
            }
            else if (type == typeof(bool))
            {
                ctx.AddInitializer(new bool[size], new long[] { 1, size }, srcVariableName, false);
            }
            else if (type == typeof(long))
            {
                ctx.AddInitializer(new long[size], new long[] { 1, size }, srcVariableName, false);
            }
            else if (type == typeof(float))
            {
                ctx.AddInitializer(new float[size], new long[] { 1, size }, srcVariableName, false);
            }
            else if (type == typeof(double))
            {
                ctx.AddInitializer(new double[size], new long[] { 1, size }, srcVariableName, false);
            }
            else if ((type == typeof(string)) || (columnType is TextDataViewType))
            {
                string[] values = new string[size];
                for (int i = 0; i < size; i++)
                {
                    values[i] = "";
                }

                ctx.AddInitializer(values, new long[] { 1, size }, srcVariableName, false);
            }
            else
            {
                return(false);
            }

            return(true);
        }
示例#7
0
        /// <summary>
        /// Creates an Onnx inferencing model by vectorizing and following the logic found in <see cref="Map"/>
        /// </summary>
        bool ISingleCanSaveOnnx.SaveAsOnnx(OnnxContext ctx, string[] outputNames, string featureColumn)
        {
            const int minimumOpSetVersion = 9;

            ctx.CheckOpSetVersion(minimumOpSetVersion, "MulticlassNaiveBayes");

            float[] featureHistogram       = new float[_featureHistogram[0].Length * _labelHistogram.Length];
            float[] labelHistogramExpanded = new float[_featureHistogram[0].Length * _labelHistogram.Length];

            for (int i = 0; i < _featureHistogram.Length; i++)
            {
                Array.Copy(_featureHistogram[i], 0, featureHistogram, i * _featureHistogram[i].Length, _featureHistogram[i].Length);
            }
            for (int i = 0; i < _featureHistogram[0].Length; i++)
            {
                Array.Copy(_labelHistogram, 0, labelHistogramExpanded, i * _featureHistogram.Length, _featureHistogram.Length);
            }

            var one            = ctx.AddInitializer(1.0f, "one");
            var oneInt         = ctx.AddInitializer(1, typeof(int), "oneInt");
            var zero           = ctx.AddInitializer(0.0f, "zero");
            var labelCount     = ctx.AddInitializer((float)_labelCount, "labelCount");
            var trainingCount  = ctx.AddInitializer((float)_totalTrainingCount, "totalTrainingCount");
            var labelHistogram = ctx.AddInitializer(labelHistogramExpanded.Take(_labelHistogram.Length), new long[] { _labelHistogram.Length, 1 }, "labelHistogram");

            var featureHistogramName        = ctx.AddInitializer(featureHistogram, new long[] { _featureHistogram.Length, _featureHistogram[0].Length }, "featureHistogram");
            var labelHistogramName          = ctx.AddInitializer(labelHistogramExpanded, new long[] { _featureHistogram[0].Length, _labelHistogram.Length }, "labelHistogramExpanded");
            var learnedAbsentFeatureLogProb = ctx.AddInitializer(_absentFeaturesLogProb, new long[] { _absentFeaturesLogProb.Length, 1 }, "absentFeaturesLogProb");

            var typeOne        = new VectorDataViewType(NumberDataViewType.Single, 1);
            var typeFea        = new VectorDataViewType(NumberDataViewType.Single, _featureHistogram[0].Length);
            var typeLabelByFea = new VectorDataViewType(NumberDataViewType.Single, _labelHistogram.Length, _featureHistogram[0].Length);
            var typeLabelByOne = new VectorDataViewType(NumberDataViewType.Single, _labelHistogram.Length, 1);

            var greaterOutput = ctx.AddIntermediateVariable(new VectorDataViewType(BooleanDataViewType.Instance, _featureHistogram[0].Length), "greaterOutput");
            var opType        = "Greater";

            ctx.CreateNode(opType, new[] { featureColumn, zero }, new[] { greaterOutput }, ctx.GetNodeName(opType), "");

            opType = "Cast";
            var castOutput = ctx.AddIntermediateVariable(typeFea, "CastOutput");
            var node       = ctx.CreateNode(opType, greaterOutput, castOutput, ctx.GetNodeName(opType), "");
            var t          = InternalDataKindExtensions.ToInternalDataKind(DataKind.Single).ToType();

            node.AddAttribute("to", t);

            opType = "ExpandDims";
            var isFeaturePresent = ctx.AddIntermediateVariable(new VectorDataViewType(NumberDataViewType.Single, 1, _featureHistogram[0].Length), "isFeaturePresent");

            ctx.CreateNode(opType, new[] { castOutput, oneInt }, new[] { isFeaturePresent }, ctx.GetNodeName(opType), "com.microsoft");

            //initialize logProb
            opType = "Div";
            var divOutput = ctx.AddIntermediateVariable(typeOne, "DivOutput");

            ctx.CreateNode(opType, new[] { labelHistogram, trainingCount }, new[] { divOutput }, ctx.GetNodeName(opType), "");

            opType = "Log";
            var logOutput = ctx.AddIntermediateVariable(typeOne, "LogOutput");

            ctx.CreateNode(opType, divOutput, logOutput, ctx.GetNodeName(opType), "");

            //log1
            opType = "Sum";
            var sumOutput = ctx.AddIntermediateVariable(_inputType, "SumOutput");

            ctx.CreateNode(opType, new[] { featureHistogramName, one }, new[] { sumOutput }, ctx.GetNodeName(opType), "");

            var logOutput1 = ctx.AddIntermediateVariable(typeLabelByFea, "LogOutput");

            LogMul(ctx, sumOutput, isFeaturePresent, logOutput1);

            //log2
            opType = "Transpose";
            var labelHistogramTrans = ctx.AddIntermediateVariable(typeFea, "Transpose");

            ctx.CreateNode(opType, labelHistogramName, labelHistogramTrans, ctx.GetNodeName(opType), "");

            opType = "Sub";
            var absentFeatureCount = ctx.AddIntermediateVariable(typeFea, "AbsentFeatureCounts");

            ctx.CreateNode(opType, new[] { labelHistogramTrans, featureHistogramName }, new[] { absentFeatureCount }, ctx.GetNodeName(opType), "");

            opType    = "Sum";
            sumOutput = ctx.AddIntermediateVariable(typeFea, "SumOutput");
            ctx.CreateNode(opType, new[] { labelHistogramTrans, labelCount }, new[] { sumOutput }, ctx.GetNodeName(opType), "");

            var logOutput2 = ctx.AddIntermediateVariable(typeLabelByFea, "LogOutput");

            LogMul(ctx, sumOutput, isFeaturePresent, logOutput2);

            //log3
            opType    = "Sum";
            sumOutput = ctx.AddIntermediateVariable(typeFea, "SumOutput");
            ctx.CreateNode(opType, new[] { absentFeatureCount, one }, new[] { sumOutput }, ctx.GetNodeName(opType), "");

            var logOutput3 = ctx.AddIntermediateVariable(typeLabelByFea, "LogOutput");

            LogMul(ctx, sumOutput, isFeaturePresent, logOutput3);

            //result
            opType = "Sub";
            var logProb = ctx.AddIntermediateVariable(typeLabelByFea, "LogProb");

            ctx.CreateNode(opType, new[] { logOutput1, logOutput2 }, new[] { logProb }, ctx.GetNodeName(opType), "");

            opType = "Sub";
            var absentFeatureLogProb = ctx.AddIntermediateVariable(typeLabelByFea, "AbsentFeatureLogProb");

            ctx.CreateNode(opType, new[] { logOutput3, logOutput2 }, new[] { absentFeatureLogProb }, ctx.GetNodeName(opType), "");

            opType = "ReduceSum";
            var logProbReduceSum = ctx.AddIntermediateVariable(typeLabelByOne, "ReduceSum");

            node = ctx.CreateNode(opType, new[] { logProb }, new[] { logProbReduceSum }, ctx.GetNodeName(opType), "");
            long[] list = { 2 };
            node.AddAttribute("axes", list);

            opType = "ReduceSum";
            var absentFeatureLogProbReduceSum = ctx.AddIntermediateVariable(typeLabelByOne, "ReduceSum");

            node = ctx.CreateNode(opType, new[] { absentFeatureLogProb }, new[] { absentFeatureLogProbReduceSum }, ctx.GetNodeName(opType), "");
            node.AddAttribute("axes", list);

            opType     = "Cast";
            castOutput = ctx.AddIntermediateVariable(NumberDataViewType.Single, "CastOutput");
            node       = ctx.CreateNode(opType, learnedAbsentFeatureLogProb, castOutput, ctx.GetNodeName(opType), "");
            t          = InternalDataKindExtensions.ToInternalDataKind(DataKind.Single).ToType();
            node.AddAttribute("to", t);

            opType = "Sub";
            var subOutput = ctx.AddIntermediateVariable(typeLabelByOne, "SubOutput");

            ctx.CreateNode(opType, new[] { castOutput, absentFeatureLogProbReduceSum }, new[] { subOutput }, ctx.GetNodeName(opType), "");

            opType    = "Sum";
            sumOutput = ctx.AddIntermediateVariable(typeLabelByOne, "SumOutput");
            ctx.CreateNode(opType, new[] { subOutput, logProbReduceSum, logOutput }, new[] { sumOutput }, ctx.GetNodeName(opType), "");

            opType = "Squeeze";
            var squeezeNode = ctx.CreateNode(opType, sumOutput, outputNames[1], ctx.GetNodeName(opType), "");

            squeezeNode.AddAttribute("axes", new long[] { 2 });

            opType = "ArgMax";
            var scoreIndex = ctx.AddIntermediateVariable(new VectorDataViewType(NumberDataViewType.Int64, 1), "ScoreIndex");

            node = ctx.CreateNode(opType, new[] { sumOutput }, new[] { scoreIndex }, ctx.GetNodeName(opType), "");
            node.AddAttribute("axis", 1);
            node.AddAttribute("keepdims", 0);

            opType     = "Cast";
            castOutput = ctx.AddIntermediateVariable(typeOne, "CastOutput");
            node       = ctx.CreateNode(opType, scoreIndex, castOutput, ctx.GetNodeName(opType), "");
            t          = InternalDataKindExtensions.ToInternalDataKind(DataKind.Single).ToType();
            node.AddAttribute("to", t);

            //log3
            opType    = "Sum";
            sumOutput = ctx.AddIntermediateVariable(typeOne, "SumOutput");
            ctx.CreateNode(opType, new[] { castOutput, one }, new[] { sumOutput }, ctx.GetNodeName(opType), "");

            opType = "Cast";
            node   = ctx.CreateNode(opType, sumOutput, outputNames[0], ctx.GetNodeName(opType), "");
            t      = InternalDataKindExtensions.ToInternalDataKind(DataKind.UInt32).ToType();
            node.AddAttribute("to", t);

            return(true);
        }