/// <summary> /// Predict a target using a linear regression model trained with the <see cref="OnlineGradientDescentTrainer"/> trainer. /// </summary> /// <param name="catalog">The regression catalog trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="lossFunction">The custom loss. Defaults to <see cref="SquaredLoss"/> if not provided.</param> /// <param name="learningRate">The learning Rate.</param> /// <param name="decreaseLearningRate">Decrease learning rate as iterations progress.</param> /// <param name="l2Regularization">L2 regularization weight.</param> /// <param name="numIterations">Number of training iterations through the data.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), and the predicted label.</returns> /// <seealso cref="OnlineGradientDescentTrainer"/>. /// <returns>The predicted output.</returns> public static Scalar <float> OnlineGradientDescent(this RegressionCatalog.RegressionTrainers catalog, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, IRegressionLoss lossFunction = null, float learningRate = OnlineGradientDescentTrainer.Options.OgdDefaultArgs.LearningRate, bool decreaseLearningRate = OnlineGradientDescentTrainer.Options.OgdDefaultArgs.DecreaseLearningRate, float l2Regularization = OnlineGradientDescentTrainer.Options.OgdDefaultArgs.L2Regularization, int numIterations = OnlineLinearOptions.OnlineDefault.NumberOfIterations, Action <LinearRegressionModelParameters> onFit = null) { OnlineLinearStaticUtils.CheckUserParams(label, features, weights, learningRate, l2Regularization, numIterations, onFit); Contracts.CheckValueOrNull(lossFunction); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new OnlineGradientDescentTrainer(env, labelName, featuresName, learningRate, decreaseLearningRate, l2Regularization, numIterations, lossFunction); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a linear regression model trained with the <see cref="OnlineGradientDescentTrainer"/> trainer. /// </summary> /// <param name="catalog">The regression catalog trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="options">Advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), and the predicted label.</returns> /// <seealso cref="OnlineGradientDescentTrainer"/>. /// <returns>The predicted output.</returns> public static Scalar <float> OnlineGradientDescent(this RegressionCatalog.RegressionTrainers catalog, Scalar <float> label, Vector <float> features, Scalar <float> weights, OnlineGradientDescentTrainer.Options options, Action <LinearRegressionModelParameters> onFit = null) { Contracts.CheckValue(label, nameof(label)); Contracts.CheckValue(features, nameof(features)); Contracts.CheckValueOrNull(weights); Contracts.CheckValue(options, nameof(options)); Contracts.CheckValueOrNull(onFit); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { options.LabelColumnName = labelName; options.FeatureColumnName = featuresName; var trainer = new OnlineGradientDescentTrainer(env, options); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }
/// <summary> /// Predict a target using a linear regression model trained with the <see cref="Microsoft.ML.Runtime.Learners.OnlineGradientDescentTrainer"/> trainer. /// </summary> /// <param name="ctx">The regression context trainer object.</param> /// <param name="label">The label, or dependent variable.</param> /// <param name="features">The features, or independent variables.</param> /// <param name="weights">The optional example weights.</param> /// <param name="lossFunction">The custom loss. Defaults to <see cref="SquaredLoss"/> if not provided.</param> /// <param name="learningRate">The learning Rate.</param> /// <param name="decreaseLearningRate">Decrease learning rate as iterations progress.</param> /// <param name="l2RegularizerWeight">L2 regularization weight.</param> /// <param name="numIterations">Number of training iterations through the data.</param> /// <param name="advancedSettings">A delegate to supply more advanced arguments to the algorithm.</param> /// <param name="onFit">A delegate that is called every time the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive /// the linear model that was trained, as well as the calibrator on top of that model. Note that this action cannot change the /// result in any way; it is only a way for the caller to be informed about what was learnt.</param> /// <returns>The set of output columns including in order the predicted binary classification score (which will range /// from negative to positive infinity), and the predicted label.</returns> /// <seealso cref="OnlineGradientDescentTrainer"/>. /// <returns>The predicted output.</returns> public static Scalar <float> OnlineGradientDescent(this RegressionContext.RegressionTrainers ctx, Scalar <float> label, Vector <float> features, Scalar <float> weights = null, IRegressionLoss lossFunction = null, float learningRate = OnlineGradientDescentTrainer.Arguments.OgdDefaultArgs.LearningRate, bool decreaseLearningRate = OnlineGradientDescentTrainer.Arguments.OgdDefaultArgs.DecreaseLearningRate, float l2RegularizerWeight = OnlineGradientDescentTrainer.Arguments.OgdDefaultArgs.L2RegularizerWeight, int numIterations = OnlineLinearArguments.OnlineDefaultArgs.NumIterations, Action <AveragedLinearArguments> advancedSettings = null, Action <LinearRegressionPredictor> onFit = null) { OnlineLinearStaticUtils.CheckUserParams(label, features, weights, learningRate, l2RegularizerWeight, numIterations, onFit, advancedSettings); Contracts.CheckValueOrNull(lossFunction); var rec = new TrainerEstimatorReconciler.Regression( (env, labelName, featuresName, weightsName) => { var trainer = new OnlineGradientDescentTrainer(env, labelName, featuresName, learningRate, decreaseLearningRate, l2RegularizerWeight, numIterations, weightsName, lossFunction, advancedSettings); if (onFit != null) { return(trainer.WithOnFitDelegate(trans => onFit(trans.Model))); } return(trainer); }, label, features, weights); return(rec.Score); }