/// <summary> /// Get difference of two occupancy map /// </summary> /// <param name="globalMulti">ocGrid1</param> /// <param name="globalSingle">ocGrid2</param> /// <param name="currentPose">current position</param> /// <param name="extentX">x-length of the comparison</param> /// <param name="extentY">y-length of the comparison</param> /// <returns>list of index classes - has ocGrid1 value</returns> public UpdateMapDataMessage Diff(int robotID, OccupancyGrid2D globalMulti, RobotPose currentPose, double extentX, double extentY) { if (!globalOcGridByEachRobotAlgorithm.ContainsKey(robotID)) { return(null); } OccupancyGrid2D globalSingle = globalOcGridByEachRobotAlgorithm[robotID].UhatGM; //OccupancyGrid2D globalSingle = globalOcGridByEachRobot[robotID]; //List<Index> diffIndexToSend = new List<Index>(); List <Position> diffPositionToSend = new List <Position>(); //List<float> heightList = new List<float>(); //List<float> covList = new List<float>(); //List<float> pijList = new List<float>(); List <float> pijSum = new List <float>(); List <float> puHat = new List <float>(); List <float> puHatSquare = new List <float>(); List <float> pSigUhateSquare = new List <float>(); int numCellXHalf = (int)(extentX / globalMulti.ResolutionX); int numCellYHalf = (int)(extentY / globalMulti.ResolutionY); int currentCellX, currentCellY; globalMulti.GetIndicies(currentPose.x, currentPose.y, out currentCellX, out currentCellY); int comparisonCellX, comparisonCellY; for (int i = 0; i < numCellYHalf * 2; i++) // [i, j] = [column, row] { for (int j = 0; j < numCellXHalf * 2; j++) { comparisonCellX = currentCellX - numCellXHalf + j; comparisonCellY = currentCellY - numCellYHalf + i; if (globalMulti.GetCellByIdx(comparisonCellX, comparisonCellY) != globalSingle.GetCellByIdx(comparisonCellX, comparisonCellY)) { double x, y; globalMulti.GetReals(comparisonCellX, comparisonCellY, out x, out y); diffPositionToSend.Add(new Position((float)x, (float)y)); //heightList.Add((float)gaussianMixMapAlgorithm.UhatGM.GetCellByIdx(j, i)); //covList.Add((float)gaussianMixMapAlgorithm.Psig_u_hat_square.GetCellByIdx(j, i)); //pijList.Add((float)gaussianMixMapAlgorithm.Pij_sum.GetCellByIdx(j, i)); pijSum.Add((float)gaussianMixMapAlgorithm.Pij_sum.GetCell(x, y)); puHat.Add((float)gaussianMixMapAlgorithm.Pu_hat.GetCell(x, y)); puHatSquare.Add((float)gaussianMixMapAlgorithm.Pu_hat_square.GetCell(x, y)); pSigUhateSquare.Add((float)gaussianMixMapAlgorithm.Psig_u_hat_square.GetCell(x, y)); } } } return(new UpdateMapDataMessage(robotID, diffPositionToSend, pijSum, puHat, puHatSquare, pSigUhateSquare)); }
/// <summary> /// Update OccupancyGrid based on lidarScan and robotPose received /// </summary> /// <param name="lidarScan"></param> /// <param name="currentRobotPose"></param> public void UpdateOccupancyGrid(ILidarScan <ILidar2DPoint> lidarScan, int robotID, int scannerID, PoseFilterState currentRobotPose, SensorPose lidarPose, List <Polygon> dynamicObstacles) { if (robotID == 1) { MAXRANGESick = 7.0; } else if (robotID == 3) { MAXRANGESick = 30.0; } if (lidarPose == null) { lidarPose = new SensorPose(0, 0, 0.5, 0, 0 * Math.PI / 180.0, 0, 0); } if (laser2RobotTransMatrixDictionary.ContainsKey(robotID)) { if (laser2RobotTransMatrixDictionary[robotID].ContainsKey(scannerID)) { JTpl = jacobianLaserPoseDictionary[robotID][scannerID]; laserToRobotDCM = laser2RobotTransMatrixDictionary[robotID][scannerID]; } else { Matrix4 laser2RobotDCM = Matrix4.FromPose(lidarPose); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { laserToRobotDCM[i, j] = laser2RobotDCM[i, j]; } } laser2RobotTransMatrixDictionary[robotID].Add(scannerID, laserToRobotDCM); jacobianLaserPoseDictionary[robotID].Add(scannerID, ComputeJacobian(lidarPose.yaw, lidarPose.pitch, lidarPose.roll)); JTpl = jacobianLaserPoseDictionary[robotID][scannerID]; } } else { laser2RobotTransMatrixDictionary.Add(robotID, new Dictionary <int, UMatrix>()); jacobianLaserPoseDictionary.Add(robotID, new Dictionary <int, UMatrix>()); Matrix4 laser2RobotDCM = Matrix4.FromPose(lidarPose); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { laserToRobotDCM[i, j] = laser2RobotDCM[i, j]; } } laser2RobotTransMatrixDictionary[robotID].Add(scannerID, new UMatrix(laserToRobotDCM)); jacobianLaserPoseDictionary[robotID].Add(scannerID, ComputeJacobian(lidarPose.yaw, lidarPose.pitch, lidarPose.roll)); JTpl = jacobianLaserPoseDictionary[robotID][scannerID]; } // calculate robot2global transformation matrix if (currentRobotPose == null) { return; } Matrix4 robot2GlocalDCM = Matrix4.FromPose(currentRobotPose); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { robotToGlocalDCM[i, j] = robot2GlocalDCM[i, j]; } } if (lidarScan == null) { return; } UMatrix JTpr = ComputeJacobianQ(currentRobotPose.q1, currentRobotPose.q2, currentRobotPose.q3, currentRobotPose.q4); List <UMatrix> JfPrCubixLaserToRobotDCM = new List <UMatrix>(6); List <UMatrix> RobotToGlocalDCMJfPlCubix = new List <UMatrix>(7); for (int i = 0; i < 7; i++) { //derivative of the robot transform matrtix w.r.t. some element of the robot psoe UMatrix j = new UMatrix(4, 4); j[0, 0] = JTpr[0, i]; j[1, 0] = JTpr[1, i]; j[2, 0] = JTpr[2, i]; j[3, 0] = JTpr[3, i]; j[0, 1] = JTpr[4, i]; j[1, 1] = JTpr[5, i]; j[2, 1] = JTpr[6, i]; j[3, 1] = JTpr[7, i]; j[0, 2] = JTpr[8, i]; j[1, 2] = JTpr[9, i]; j[2, 2] = JTpr[10, i]; j[3, 2] = JTpr[11, i]; j[0, 3] = JTpr[12, i]; j[1, 3] = JTpr[13, i]; j[2, 3] = JTpr[14, i]; j[3, 3] = JTpr[15, i]; JfPrCubixLaserToRobotDCM.Add(j * laserToRobotDCM); if (i == 7) { continue; // same as break } UMatrix tempJacobianPl = new UMatrix(4, 4); tempJacobianPl[0, 0] = JTpl[0, i]; tempJacobianPl[1, 0] = JTpl[1, i]; tempJacobianPl[2, 0] = JTpl[2, i]; tempJacobianPl[3, 0] = JTpl[3, i]; tempJacobianPl[0, 1] = JTpl[4, i]; tempJacobianPl[1, 1] = JTpl[5, i]; tempJacobianPl[2, 1] = JTpl[6, i]; tempJacobianPl[3, 1] = JTpl[7, i]; tempJacobianPl[0, 2] = JTpl[8, i]; tempJacobianPl[1, 2] = JTpl[9, i]; tempJacobianPl[2, 2] = JTpl[10, i]; tempJacobianPl[3, 2] = JTpl[11, i]; tempJacobianPl[0, 3] = JTpl[12, i]; tempJacobianPl[1, 3] = JTpl[13, i]; tempJacobianPl[2, 3] = JTpl[14, i]; tempJacobianPl[3, 3] = JTpl[15, i]; RobotToGlocalDCMJfPlCubix.Add(robotToGlocalDCM * tempJacobianPl); } UMatrix laserToENU = robotToGlocalDCM * laserToRobotDCM; //UMatrix pijCell = new UMatrix(rangeToApply * 2 + 1, rangeToApply * 2 + 1); // update covariance UpdateCovarianceQ(currentRobotPose.Covariance); //SickPoint p = new SickPoint(new RThetaCoordinate(1.0f, 0.0f)); for (int laserIndex = 0; laserIndex < lidarScan.Points.Count; laserIndex++) { lock (locker) { ILidar2DPoint p = lidarScan.Points[laserIndex]; if (scannerID == 1) { if (p.RThetaPoint.R >= MAXRANGESick || p.RThetaPoint.R <= MINRANGESick) { continue; } } else if (scannerID == 2) { if (p.RThetaPoint.R >= MAXRANGEHokuyo || p.RThetaPoint.R <= MINRANGEHokuyo || laserIndex < hokuyoStartIdx || laserIndex > hokuyoEndIdx) { continue; } } bool hitDynamicObstacles = false; // figure out if this lidar point is hitting other robot // find laser points in 3D space // first define 2D point on the laser plane UMatrix laserPoint = new UMatrix(4, 1); double deg = (p.RThetaPoint.theta * 180.0 / Math.PI); int thetaDegIndex = 0; if (scannerID == 2) // hokuyo { thetaDegIndex = (int)Math.Round((deg + laserHalfAngleHokuyo) * 2.84); // % 360; } else if (scannerID == 1) // sick { thetaDegIndex = (int)Math.Round((deg + laserHalfAngleSick) * 2) % 360; } double cosTheta = 0, sinTheta = 0; if (scannerID == 1) { cosTheta = cosLookupSick[thetaDegIndex]; sinTheta = sinLookupSick[thetaDegIndex]; } else if (scannerID == 2) { cosTheta = cosLookupHokuyo[thetaDegIndex]; sinTheta = sinLookupHokuyo[thetaDegIndex]; } // initial laser points laserPoint[0, 0] = p.RThetaPoint.R * cosTheta; laserPoint[1, 0] = p.RThetaPoint.R * sinTheta; laserPoint[2, 0] = 0; laserPoint[3, 0] = 1; //calculate r_hat_ENU UMatrix r_hat_ENU = laserToENU * laserPoint; foreach (Polygon dp in dynamicObstacles) { if (dp.IsInside(new Vector2(r_hat_ENU[0, 0], r_hat_ENU[1, 0]))) { hitDynamicObstacles = true; break; } } if (hitDynamicObstacles) { continue; } //-------------------------------// // COVARIANCE UMatrix CALCULATION // //-------------------------------// UMatrix JRr = new UMatrix(4, 2); JRr.Zero(); JRr[0, 0] = cosTheta; JRr[0, 1] = -p.RThetaPoint.R * sinTheta; JRr[1, 0] = sinTheta; JRr[1, 1] = p.RThetaPoint.R * cosTheta; UMatrix Jfr = new UMatrix(3, 2); // 3x2 Jfr = (laserToENU * JRr).Submatrix(0, 2, 0, 1); // 4x4 * 4x4 * 4x2 UMatrix Jfpr = new UMatrix(3, 7); UMatrix Jfpl = new UMatrix(3, 6); for (int i = 0; i < 7; i++) //for each state var (i.e. x,y,z,y,p,r) { UMatrix JfprTemp = (JfPrCubixLaserToRobotDCM[i]) * laserPoint; // 4 by 1 UMatrix Jfpr[0, i] = JfprTemp[0, 0]; Jfpr[1, i] = JfprTemp[1, 0]; Jfpr[2, i] = JfprTemp[2, 0]; //UMatrix JfplTemp = (RobotToGlocalDCMJfPlCubix[i]) * laserPoint; // 4 by 1 UMatrix //Jfpl[0, i] = JfplTemp[0, 0]; //Jfpl[1, i] = JfplTemp[1, 0]; //Jfpl[2, i] = JfplTemp[2, 0]; } UMatrix JfprQprJfprT = new UMatrix(3, 3); UMatrix JfplQplJfplT = new UMatrix(3, 3); UMatrix JfrQrJfrT = new UMatrix(3, 3); JfprQprJfprT = (Jfpr * covRobotPoseQ) * Jfpr.Transpose(); //JfplQplJfplT = (Jfpl * covLaserPose) * Jfpl.Transpose(); // not doing because covariance of laser point is so small JfrQrJfrT = (Jfr * covLaserScan) * Jfr.Transpose(); // add above variables together and get the covariance UMatrix covRHatENU = JfprQprJfprT + /*JfplQplJfplT +*/ JfrQrJfrT; // 3x3 UMatrix //-----------------------------// // FIND WHICH CELLS TO COMPUTE // //-----------------------------// // find out cells around this laser point int laserPointIndexX = 0; int laserPointIndexY = 0; //this is used just to do the transformation from reaal to grid and visa versa psig_u_hat_square.GetIndicies(r_hat_ENU[0, 0], r_hat_ENU[1, 0], out laserPointIndexX, out laserPointIndexY); // get cell (r_hat_ENU_X, r_hat_ENU_y) if ((laserPointIndexX < 0 || laserPointIndexX >= numCellX) || (laserPointIndexY < 0 || laserPointIndexY >= numCellY)) { continue; } int rangeToApplyX = (int)Math.Round(Math.Sqrt(covRHatENU[0, 0]) / (pij_sum.ResolutionX * 2)) * 2; int rangeToApplyY = (int)Math.Round(Math.Sqrt(covRHatENU[1, 1]) / (pij_sum.ResolutionY * 2)) * 2; //-----------------------------------------// // COMPUTE THE DISTRIBUTION OF UNCERTAINTY // //-----------------------------------------// UMatrix pijCell = new UMatrix(rangeToApplyY * 2 + 1, rangeToApplyX * 2 + 1); double sigX = Math.Sqrt(covRHatENU[0, 0]); double sigY = Math.Sqrt(covRHatENU[1, 1]); double rho = covRHatENU[1, 0] / (sigX * sigY); double logTerm = Math.Log(2 * Math.PI * sigX * sigY * Math.Sqrt(1 - (rho * rho))); double xTermDenom = (1 - (rho * rho)); //for (int i = -rangeToApply; i <= rangeToApply; i++) // row for (int i = -rangeToApplyX; i <= rangeToApplyX; i++) // row { //for (int j = -rangeToApplyX; j <= rangeToApplyX; j++) // column for (int j = -rangeToApplyY; j <= rangeToApplyY; j++) // column { if (laserPointIndexX + i < 0 || laserPointIndexX + i >= numCellX || laserPointIndexY + j < 0 || laserPointIndexY + j >= numCellY) { continue; } // estimate using Bivariate Normal Distribution double posX = 0; double posY = 0; psig_u_hat_square.GetReals(laserPointIndexX + i, laserPointIndexY + j, out posX, out posY); posX += psig_u_hat_square.ResolutionX / 2; posY += psig_u_hat_square.ResolutionY / 2; double x = posX - r_hat_ENU[0, 0]; double y = posY - r_hat_ENU[1, 0]; double z = (x * x) / (sigX * sigX) - (2 * rho * x * y / (sigX * sigY)) + (y * y) / (sigY * sigY); double xTerm = -0.5 * z / xTermDenom; // chi2 test //if ((2 * (1 - (rho * rho))) * ((x * x) / (sigX * sigX) + (y * y) / (sigY * sigY) - (2 * rho * x * y) / (sigX * sigY)) > 15.2) // continue; pijCell[j + rangeToApplyY, i + rangeToApplyX] = Math.Exp(xTerm - logTerm) * psig_u_hat_square.ResolutionX * psig_u_hat_square.ResolutionY; laserHit.SetCellByIdx(laserPointIndexX + i, laserPointIndexY + j, laserHit.GetCellByIdxUnsafe(laserPointIndexX + i, laserPointIndexY + j) + 1); } } //---------------------------// // COMPUTE HEIGHT ESTIMATION // //---------------------------// UMatrix PEN = covRHatENU.Submatrix(0, 1, 0, 1); UMatrix PENInv = PEN.Inverse2x2; UMatrix PuEN = new UMatrix(1, 2); UMatrix PENu = new UMatrix(2, 1); UMatrix PuENPENInv = PuEN * PENInv; UMatrix uHatMatrix = new UMatrix(rangeToApplyY * 2 + 1, rangeToApplyX * 2 + 1); UMatrix sigUHatMatrix = new UMatrix(rangeToApplyY * 2 + 1, rangeToApplyX * 2 + 1); PuEN[0, 0] = covRHatENU[2, 0]; PuEN[0, 1] = covRHatENU[2, 1]; PENu[0, 0] = covRHatENU[0, 2]; PENu[1, 0] = covRHatENU[1, 2]; double sig_u_hat_product = (PuENPENInv * PENu)[0, 0]; // output = 1x1 UMatrix for (int i = -rangeToApplyX; i <= rangeToApplyX; i++) // row { for (int j = -rangeToApplyY; j <= rangeToApplyY; j++) // column { UMatrix ENmr_EN = new UMatrix(2, 1); double posX = 0; double posY = 0; psig_u_hat_square.GetReals(laserPointIndexX + i, laserPointIndexY + j, out posX, out posY); ENmr_EN[0, 0] = posX - r_hat_ENU[0, 0]; ENmr_EN[1, 0] = posY - r_hat_ENU[1, 0]; double u_hat_product = (PuENPENInv * (ENmr_EN))[0, 0]; // output = 1x1 UMatrix uHatMatrix[j + rangeToApplyY, i + rangeToApplyX] = r_hat_ENU[2, 0] + u_hat_product; sigUHatMatrix[j + rangeToApplyY, i + rangeToApplyX] = covRHatENU[2, 2] - sig_u_hat_product; } } //-------------------------------------------// // ASSIGN FINAL VALUES TO THE OCCUPANCY GRID // //-------------------------------------------// for (int i = -rangeToApplyX; i <= rangeToApplyX; i++) { for (int j = -rangeToApplyY; j <= rangeToApplyY; j++) { int indexXToUpdate = laserPointIndexX + i; int indexYToUpdate = laserPointIndexY + j; // if the cell to update is out of range, continue if (!psig_u_hat_square.CheckValidIdx(indexXToUpdate, indexYToUpdate)) { continue; } pij_sum.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApplyY, i + rangeToApplyX] + pij_sum.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate)); pu_hat.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApplyY, i + rangeToApplyX] * uHatMatrix[j + rangeToApplyY, i + rangeToApplyX] + pu_hat.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate)); pu_hat_square.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApplyY, i + rangeToApplyX] * uHatMatrix[j + rangeToApplyY, i + rangeToApplyX] * uHatMatrix[j + rangeToApply, i + rangeToApply] + pu_hat_square.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate)); psig_u_hat_square.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApplyY, i + rangeToApplyX] * sigUHatMatrix[j + rangeToApplyY, i + rangeToApplyX] + psig_u_hat_square.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate)); uhatGM.SetCellByIdx(indexXToUpdate, indexYToUpdate, (pu_hat.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate) / pij_sum.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate))); double largeU = (pu_hat.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate) / pij_sum.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate)); double largeSig = (psig_u_hat_square.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate) + pu_hat_square.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate)) / pij_sum.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate) - largeU * largeU; if (pij_sum.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate) > 1) { thresholdedHeightMap.SetCellByIdx(indexXToUpdate, indexYToUpdate, largeU); //pij_sum.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate) / laserHit.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate)); } uhatGM.SetCellByIdx(indexXToUpdate, indexYToUpdate, largeU); //sigSqrGM.SetCellByIdx(indexXToUpdate, indexYToUpdate, largeU + 2 * Math.Sqrt(largeSig)); if (indexMap.GetCellByIdxUnsafe(indexXToUpdate, indexYToUpdate) != 1.0) { Index index = new Index(indexXToUpdate, indexYToUpdate); indicesDictionary.Add(index, indicesDictionary.Count); indexMap.SetCellByIdx(indexXToUpdate, indexYToUpdate, 1.0); } } } } // end foreach //Console.WriteLine("1: " + sw1.ElapsedMilliseconds + // " 2: " + sw2.ElapsedMilliseconds + // " 3: " + sw3.ElapsedMilliseconds + // " 4: " + sw4.ElapsedMilliseconds + // " 5: " + sw5.ElapsedMilliseconds + // " 6: " + sw6.ElapsedMilliseconds + // " TOTAL: " + (sw1.ElapsedMilliseconds + sw2.ElapsedMilliseconds + sw3.ElapsedMilliseconds + sw4.ElapsedMilliseconds + sw5.ElapsedMilliseconds + sw6.ElapsedMilliseconds).ToString()); } // end function }
/// <summary> /// Update OccupancyGrid based on lidarScan and robotPose received /// </summary> /// <param name="lidarScan"></param> /// <param name="currentRobotPose"></param> public void UpdateOccupancyGrid(ILidarScan <ILidar2DPoint> lidarScan, int robotID, RobotPose currentRobotPose, SensorPose lidarPose, List <Polygon> dynamicObstacles) { if (lidarPose == null) { lidarPose = new SensorPose(0, 0, 0.5, 0, 0 * Math.PI / 180.0, 0, 0); } if (laser2RobotTransMatrixDictionary.ContainsKey(robotID)) { JTpl = jacobianLaserPoseDictionary[robotID]; laserToRobotDCM = laser2RobotTransMatrixDictionary[robotID]; } else { Matrix4 laser2RobotDCM = Matrix4.FromPose(lidarPose); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { laserToRobotDCM[i, j] = laser2RobotDCM[i, j]; } } laser2RobotTransMatrixDictionary.Add(robotID, laserToRobotDCM); jacobianLaserPoseDictionary.Add(robotID, ComputeJacobian(lidarPose.yaw, lidarPose.pitch, lidarPose.roll)); JTpl = jacobianLaserPoseDictionary[robotID]; } // calculate robot2global transformation matrix Matrix4 robot2GlocalDCM = Matrix4.FromPose(currentRobotPose); for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { robotToGlocalDCM[i, j] = robot2GlocalDCM[i, j]; } } if (lidarScan == null) { return; } Stopwatch sw1 = new Stopwatch(); Stopwatch sw2 = new Stopwatch(); Stopwatch sw3 = new Stopwatch(); Stopwatch sw4 = new Stopwatch(); Stopwatch sw5 = new Stopwatch(); Stopwatch sw6 = new Stopwatch(); UMatrix JTpr = ComputeJacobian(currentRobotPose.yaw, currentRobotPose.pitch, currentRobotPose.roll); List <UMatrix> JfPrCubixLaserToRobotDCM = new List <UMatrix>(6); List <UMatrix> RobotToGlocalDCMJfPlCubix = new List <UMatrix>(6); for (int i = 0; i < 6; i++) { //derivative of the robot transform matrtix w.r.t. some element of the robot psoe UMatrix j = new UMatrix(4, 4); j[0, 0] = JTpr[0, i]; j[1, 0] = JTpr[1, i]; j[2, 0] = JTpr[2, i]; j[3, 0] = JTpr[3, i]; j[0, 1] = JTpr[4, i]; j[1, 1] = JTpr[5, i]; j[2, 1] = JTpr[6, i]; j[3, 1] = JTpr[7, i]; j[0, 2] = JTpr[8, i]; j[1, 2] = JTpr[9, i]; j[2, 2] = JTpr[10, i]; j[3, 2] = JTpr[11, i]; j[0, 3] = JTpr[12, i]; j[1, 3] = JTpr[13, i]; j[2, 3] = JTpr[14, i]; j[3, 3] = JTpr[15, i]; JfPrCubixLaserToRobotDCM.Add(j * laserToRobotDCM); UMatrix tempJacobianPl = new UMatrix(4, 4); tempJacobianPl[0, 0] = JTpl[0, i]; tempJacobianPl[1, 0] = JTpl[1, i]; tempJacobianPl[2, 0] = JTpl[2, i]; tempJacobianPl[3, 0] = JTpl[3, i]; tempJacobianPl[0, 1] = JTpl[4, i]; tempJacobianPl[1, 1] = JTpl[5, i]; tempJacobianPl[2, 1] = JTpl[6, i]; tempJacobianPl[3, 1] = JTpl[7, i]; tempJacobianPl[0, 2] = JTpl[8, i]; tempJacobianPl[1, 2] = JTpl[9, i]; tempJacobianPl[2, 2] = JTpl[10, i]; tempJacobianPl[3, 2] = JTpl[11, i]; tempJacobianPl[0, 3] = JTpl[12, i]; tempJacobianPl[1, 3] = JTpl[13, i]; tempJacobianPl[2, 3] = JTpl[14, i]; tempJacobianPl[3, 3] = JTpl[15, i]; RobotToGlocalDCMJfPlCubix.Add(robotToGlocalDCM * tempJacobianPl); } UMatrix laserToENU = robotToGlocalDCM * laserToRobotDCM; UMatrix pijCell = new UMatrix(rangeToApply * 2 + 1, rangeToApply * 2 + 1); // update covariance UpdateCovariance(currentRobotPose.covariance); //SickPoint p = new SickPoint(new RThetaCoordinate(1.0f, 0.0f)); for (int laserIndex = 0; laserIndex < lidarScan.Points.Count; laserIndex++) { lock (locker) { ILidar2DPoint p = lidarScan.Points[laserIndex]; if (p.RThetaPoint.R >= MAXRANGE) { continue; } bool hitDynamicObstacles = false; // figure out if this lidar point is hitting other robot // find laser points in 3D space // first define 2D point on the laser plane UMatrix laserPoint = new UMatrix(4, 1); double deg = (p.RThetaPoint.theta * 180.0 / Math.PI); int thetaDegIndex = (int)Math.Round((deg + 90.0) * 2.0) % 360; double cosTheta = cosLookup[thetaDegIndex]; double sinTheta = sinLookup[thetaDegIndex]; laserPoint[0, 0] = p.RThetaPoint.R * cosTheta; laserPoint[1, 0] = p.RThetaPoint.R * sinTheta; laserPoint[2, 0] = 0; laserPoint[3, 0] = 1; //calculate r_hat_ENU UMatrix r_hat_ENU = laserToENU * laserPoint; foreach (Polygon dp in dynamicObstacles) { if (dp.IsInside(new Vector2(r_hat_ENU[0, 0], r_hat_ENU[1, 0]))) { hitDynamicObstacles = true; break; } } if (hitDynamicObstacles) { continue; } //-------------------------------// // COVARIANCE UMatrix CALCULATION // //-------------------------------// UMatrix JRr = new UMatrix(4, 2); JRr.Zero(); JRr[0, 0] = cosTheta; JRr[0, 1] = -p.RThetaPoint.R * sinTheta; JRr[1, 0] = sinTheta; JRr[1, 1] = p.RThetaPoint.R * cosTheta; UMatrix Jfr = new UMatrix(3, 2); // 3x2 Jfr = (laserToENU * JRr).Submatrix(0, 2, 0, 1); // 4x4 * 4x4 * 4x2 UMatrix Jfpr = new UMatrix(3, 6); UMatrix Jfpl = new UMatrix(3, 6); sw1.Reset(); sw1.Start(); for (int i = 0; i < 6; i++) //for each state var (i.e. x,y,z,y,p,r) { UMatrix JfprTemp = (JfPrCubixLaserToRobotDCM[i]) * laserPoint; // 4 by 1 UMatrix Jfpr[0, i] = JfprTemp[0, 0]; Jfpr[1, i] = JfprTemp[1, 0]; Jfpr[2, i] = JfprTemp[2, 0]; //UMatrix JfplTemp = (RobotToGlocalDCMJfPlCubix[i]) * laserPoint; // 4 by 1 UMatrix //Jfpl[0, i] = JfplTemp[0, 0]; //Jfpl[1, i] = JfplTemp[1, 0]; //Jfpl[2, i] = JfplTemp[2, 0]; } sw1.Stop(); sw2.Reset(); sw2.Start(); UMatrix JfprQprJfprT = new UMatrix(3, 3); UMatrix JfplQplJfplT = new UMatrix(3, 3); UMatrix JfrQrJfrT = new UMatrix(3, 3); JfprQprJfprT = (Jfpr * covRobotPose) * Jfpr.Transpose(); //JfplQplJfplT = (Jfpl * covLaserPose) * Jfpl.Transpose(); JfrQrJfrT = (Jfr * covLaserScan) * Jfr.Transpose(); // add above variables together and get the covariance UMatrix covRHatENU = JfprQprJfprT + /*JfplQplJfplT +*/ JfrQrJfrT; // 3x3 UMatrix sw2.Stop(); sw3.Reset(); sw3.Start(); //-----------------------------// // FIND WHICH CELLS TO COMPUTE // //-----------------------------// // find out cells around this laser point int laserPointIndexX = 0; int laserPointIndexY = 0; //this is used just to do the transformation from reaal to grid and visa versa psig_u_hat_square.GetIndicies(r_hat_ENU[0, 0], r_hat_ENU[1, 0], out laserPointIndexX, out laserPointIndexY); // get cell (r_hat_ENU_X, r_hat_ENU_y) sw3.Stop(); sw4.Reset(); sw4.Start(); //-----------------------------------------// // COMPUTE THE DISTRIBUTION OF UNCERTAINTY // //-----------------------------------------// double sigX = Math.Sqrt(covRHatENU[0, 0]); double sigY = Math.Sqrt(covRHatENU[1, 1]); double rho = covRHatENU[1, 0] / (sigX * sigY); double logTerm = Math.Log(2 * Math.PI * sigX * sigY * Math.Sqrt(1 - (rho * rho))); double xTermDenom = (1 - (rho * rho)); for (int i = -rangeToApply; i <= rangeToApply; i++) // column { for (int j = -rangeToApply; j <= rangeToApply; j++) // row { // estimate using Bivariate Normal Distribution double posX = 0; double posY = 0; psig_u_hat_square.GetReals(laserPointIndexX + i, laserPointIndexY + j, out posX, out posY); posX += psig_u_hat_square.ResolutionX / 2; posY += psig_u_hat_square.ResolutionY / 2; double x = posX - r_hat_ENU[0, 0]; double y = posY - r_hat_ENU[1, 0]; double z = (x * x) / (sigX * sigX) - (2 * rho * x * y / (sigX * sigY)) + (y * y) / (sigY * sigY); double xTerm = -0.5 * z / xTermDenom; // chi2 test //if ((2 * (1 - (rho * rho))) * ((x * x) / (sigX * sigX) + (y * y) / (sigY * sigY) - (2 * rho * x * y) / (sigX * sigY)) > 15.2) // continue; pijCell[j + rangeToApply, i + rangeToApply] = Math.Exp(xTerm - logTerm) * psig_u_hat_square.ResolutionX * psig_u_hat_square.ResolutionY; laserHit.SetCellByIdx(laserPointIndexX + i, laserPointIndexY + j, laserHit.GetCellByIdx(laserPointIndexX + i, laserPointIndexY + j) + 1); } } sw4.Stop(); sw5.Reset(); sw5.Start(); //---------------------------// // COMPUTE HEIGHT ESTIMATION // //---------------------------// // Matrix2 PEN = new Matrix2(covRHatENU[0, 0], covRHatENU[0, 1], covRHatENU[1, 0], covRHatENU[1, 1]); UMatrix PEN = covRHatENU.Submatrix(0, 1, 0, 1); UMatrix PENInv = PEN.Inverse2x2; UMatrix PuEN = new UMatrix(1, 2); UMatrix PENu = new UMatrix(2, 1); UMatrix PuENPENInv = PuEN * PENInv; UMatrix uHatMatrix = new UMatrix(rangeToApply * 2 + 1, rangeToApply * 2 + 1); UMatrix sigUHatMatrix = new UMatrix(rangeToApply * 2 + 1, rangeToApply * 2 + 1); PuEN[0, 0] = covRHatENU[2, 0]; PuEN[0, 1] = covRHatENU[2, 1]; PENu[0, 0] = covRHatENU[0, 2]; PENu[1, 0] = covRHatENU[1, 2]; double sig_u_hat_product = (PuENPENInv * PENu)[0, 0]; // output = 1x1 UMatrix for (int i = -rangeToApply; i <= rangeToApply; i++) // column { for (int j = -rangeToApply; j <= rangeToApply; j++) // row { UMatrix ENmr_EN = new UMatrix(2, 1); double posX = 0; double posY = 0; psig_u_hat_square.GetReals(laserPointIndexX + i, laserPointIndexY + j, out posX, out posY); ENmr_EN[0, 0] = posX - r_hat_ENU[0, 0]; ENmr_EN[1, 0] = posY - r_hat_ENU[1, 0]; double u_hat_product = (PuENPENInv * (ENmr_EN))[0, 0]; // output = 1x1 UMatrix uHatMatrix[j + rangeToApply, i + rangeToApply] = r_hat_ENU[2, 0] + u_hat_product; sigUHatMatrix[j + rangeToApply, i + rangeToApply] = covRHatENU[2, 2] - sig_u_hat_product; } } sw5.Stop(); sw6.Reset(); sw6.Start(); //-------------------------------------------// // ASSIGN FINAL VALUES TO THE OCCUPANCY GRID // //-------------------------------------------// for (int i = -rangeToApply; i <= rangeToApply; i++) { for (int j = -rangeToApply; j <= rangeToApply; j++) { int indexXToUpdate = laserPointIndexX + i; int indexYToUpdate = laserPointIndexY + j; // if the cell to update is out of range, continue if (!psig_u_hat_square.CheckValidIdx(indexXToUpdate, indexYToUpdate)) { //Console.WriteLine("Laser points out of the occupancy grid map"); continue; } pij_sum.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApply, i + rangeToApply] + pij_sum.GetCellByIdx(indexXToUpdate, indexYToUpdate)); pu_hat.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApply, i + rangeToApply] * uHatMatrix[j + rangeToApply, i + rangeToApply] + pu_hat.GetCellByIdx(indexXToUpdate, indexYToUpdate)); pu_hat_square.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApply, i + rangeToApply] * uHatMatrix[j + rangeToApply, i + rangeToApply] * uHatMatrix[j + rangeToApply, i + rangeToApply] + pu_hat_square.GetCellByIdx(indexXToUpdate, indexYToUpdate)); psig_u_hat_square.SetCellByIdx(indexXToUpdate, indexYToUpdate, pijCell[j + rangeToApply, i + rangeToApply] * sigUHatMatrix[j + rangeToApply, i + rangeToApply] + psig_u_hat_square.GetCellByIdx(indexXToUpdate, indexYToUpdate)); uhatGM.SetCellByIdx(indexXToUpdate, indexYToUpdate, (pu_hat.GetCellByIdx(indexXToUpdate, indexYToUpdate) / pij_sum.GetCellByIdx(indexXToUpdate, indexYToUpdate))); normalisedPijSum.SetCellByIdx(indexXToUpdate, indexYToUpdate, pij_sum.GetCellByIdx(indexXToUpdate, indexYToUpdate) / laserHit.GetCellByIdx(indexXToUpdate, indexYToUpdate)); double largeU = (pu_hat.GetCellByIdx(indexXToUpdate, indexYToUpdate) / pij_sum.GetCellByIdx(indexXToUpdate, indexYToUpdate)); double largeSig = (psig_u_hat_square.GetCellByIdx(indexXToUpdate, indexYToUpdate) + pu_hat_square.GetCellByIdx(indexXToUpdate, indexYToUpdate)) / pij_sum.GetCellByIdx(indexXToUpdate, indexYToUpdate) - largeU * largeU; uhatGM.SetCellByIdx(indexXToUpdate, indexYToUpdate, largeU); sigSqrGM.SetCellByIdx(indexXToUpdate, indexYToUpdate, largeSig); Index index = new Index(indexXToUpdate, indexYToUpdate); if (!indicesDictionary.ContainsKey(index)) { indicesDictionary.Add(index, indicesDictionary.Count); } /* * if (indicesDictionary.ContainsKey(index)) * { * int indexOfIndices = indicesDictionary[index]; * heightList[indexOfIndices] = (float)largeU; * covList[indexOfIndices] = (float)largeSig; * pijSumList[indexOfIndices] = (float)pij_sum.GetCellByIdx(indexXToUpdate, indexYToUpdate); * } * else * { * indicesDictionary.Add(index, indicesDictionary.Count); * indicesList.Add(new Index(indexXToUpdate, indexYToUpdate)); * heightList.Add((float)largeU); * covList.Add((float)largeSig); * pijSumList.Add((float)pij_sum.GetCellByIdx(indexXToUpdate, indexYToUpdate)); * } */ } } sw6.Stop(); } // end foreach //Console.WriteLine("1: " + sw1.ElapsedMilliseconds + // " 2: " + sw2.ElapsedMilliseconds + // " 3: " + sw3.ElapsedMilliseconds + // " 4: " + sw4.ElapsedMilliseconds + // " 5: " + sw5.ElapsedMilliseconds + // " 6: " + sw6.ElapsedMilliseconds + // " TOTAL: " + (sw1.ElapsedMilliseconds + sw2.ElapsedMilliseconds + sw3.ElapsedMilliseconds + sw4.ElapsedMilliseconds + sw5.ElapsedMilliseconds + sw6.ElapsedMilliseconds).ToString()); } // end function }