//override public void pca(double[] i_v1, double[] i_v2, int i_number_of_point, NyARDoubleMatrix22 o_evec, double[] o_ev, double[] o_mean) { NyARMatPca input = this.__pca_input;// 次処理で初期化される。 // pcaの準備 input.realloc(i_number_of_point, 2); double[][] input_array = input.getArray(); for (int i = 0; i < i_number_of_point; i++) { input_array[i][0] = i_v1[i]; input_array[i][1] = i_v2[i]; } // 主成分分析 input.pca(this.__pca_evec, this.__pca_ev, this.__pca_mean); double[] mean_array = this.__pca_mean.getArray(); double[][] evec_array = this.__pca_evec.getArray(); double[] ev_array = this.__pca_ev.getArray(); o_evec.m00 = evec_array[0][0]; o_evec.m01 = evec_array[0][1]; o_evec.m10 = evec_array[1][0]; o_evec.m11 = evec_array[1][1]; o_ev[0] = ev_array[0]; o_ev[1] = ev_array[1]; o_mean[0] = mean_array[0]; o_mean[1] = mean_array[1]; return; }
/** * この関数は、遠近法のパラメータを計算して、返却します。 */ public override sealed bool getParam(int i_dest_w, int i_dest_h, double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, double[] o_param) { double ltx = this._local_x; double lty = this._local_y; double rbx = ltx + i_dest_w; double rby = lty + i_dest_h; NyARDoubleMatrix44 mat_x = new NyARDoubleMatrix44(); mat_x.m00 = ltx; mat_x.m01 = lty; mat_x.m02 = -ltx * x1; mat_x.m03 = -lty * x1; mat_x.m10 = rbx; mat_x.m11 = lty; mat_x.m12 = -rbx * x2; mat_x.m13 = -lty * x2; mat_x.m20 = rbx; mat_x.m21 = rby; mat_x.m22 = -rbx * x3; mat_x.m23 = -rby * x3; mat_x.m30 = ltx; mat_x.m31 = rby; mat_x.m32 = -ltx * x4; mat_x.m33 = -rby * x4; mat_x.inverse(mat_x); NyARDoubleMatrix44 mat_y = new NyARDoubleMatrix44(); mat_y.m00 = ltx; mat_y.m01 = lty; mat_y.m02 = -ltx * y1; mat_y.m03 = -lty * y1; mat_y.m10 = rbx; mat_y.m11 = lty; mat_y.m12 = -rbx * y2; mat_y.m13 = -lty * y2; mat_y.m20 = rbx; mat_y.m21 = rby; mat_y.m22 = -rbx * y3; mat_y.m23 = -rby * y3; mat_y.m30 = ltx; mat_y.m31 = rby; mat_y.m32 = -ltx * y4; mat_y.m33 = -rby * y4; mat_y.inverse(mat_y); double a = mat_x.m20 * x1 + mat_x.m21 * x2 + mat_x.m22 * x3 + mat_x.m23 * x4; double b = mat_x.m20 + mat_x.m21 + mat_x.m22 + mat_x.m23; double d = mat_x.m30 * x1 + mat_x.m31 * x2 + mat_x.m32 * x3 + mat_x.m33 * x4; double f = mat_x.m30 + mat_x.m31 + mat_x.m32 + mat_x.m33; double g = mat_y.m20 * y1 + mat_y.m21 * y2 + mat_y.m22 * y3 + mat_y.m23 * y4; double h = mat_y.m20 + mat_y.m21 + mat_y.m22 + mat_y.m23; double i = mat_y.m30 * y1 + mat_y.m31 * y2 + mat_y.m32 * y3 + mat_y.m33 * y4; double j = mat_y.m30 + mat_y.m31 + mat_y.m32 + mat_y.m33; NyARDoubleMatrix22 tm = new NyARDoubleMatrix22(); tm.m00 = b; tm.m01 = -h; tm.m10 = f; tm.m11 = -j; tm.inverse(tm); double A, B, C, D, E, F, G, H; C = tm.m00 * (a - g) + tm.m01 * (d - i); //C F = tm.m10 * (a - g) + tm.m11 * (d - i); //F G = a - C * b; H = d - C * f; A = (mat_x.m00 * x1 + mat_x.m01 * x2 + mat_x.m02 * x3 + mat_x.m03 * x4) - C * (mat_x.m00 + mat_x.m01 + mat_x.m02 + mat_x.m03); B = (mat_x.m10 * x1 + mat_x.m11 * x2 + mat_x.m12 * x3 + mat_x.m13 * x4) - C * (mat_x.m10 + mat_x.m11 + mat_x.m12 + mat_x.m13); D = (mat_y.m00 * y1 + mat_y.m01 * y2 + mat_y.m02 * y3 + mat_y.m03 * y4) - F * (mat_y.m00 + mat_y.m01 + mat_y.m02 + mat_y.m03); E = (mat_y.m10 * y1 + mat_y.m11 * y2 + mat_y.m12 * y3 + mat_y.m13 * y4) - F * (mat_y.m10 + mat_y.m11 + mat_y.m12 + mat_y.m13); o_param[0] = A; o_param[1] = B; o_param[2] = C; o_param[3] = D; o_param[4] = E; o_param[5] = F; o_param[6] = G; o_param[7] = H; return true; }
/** * この関数は、逆行列を計算して、インスタンスにセットします。 * @param i_src * 逆行列を計算するオブジェクト。thisを指定できます。 * @return * 逆行列を得られると、trueを返します。 */ public bool inverse(NyARDoubleMatrix22 i_src) { double a11,a12,a21,a22; a11=i_src.m00; a12=i_src.m01; a21=i_src.m10; a22=i_src.m11; double det=a11*a22-a12*a21; if(det==0){ return false; } det=1/det; this.m00=a22*det; this.m01=-a12*det; this.m10=-a21*det; this.m11=a11*det; return true; }
/** * この関数は、逆行列を計算して、インスタンスにセットします。 * @param i_src * 逆行列を計算するオブジェクト。thisを指定できます。 * @return * 逆行列を得られると、trueを返します。 */ public bool inverse(NyARDoubleMatrix22 i_src) { double a11, a12, a21, a22; a11 = i_src.m00; a12 = i_src.m01; a21 = i_src.m10; a22 = i_src.m11; double det = a11 * a22 - a12 * a21; if (det == 0) { return(false); } det = 1 / det; this.m00 = a22 * det; this.m01 = -a12 * det; this.m10 = -a21 * det; this.m11 = a11 * det; return(true); }
/** * この関数は、輪郭点集合からay+bx+c=0の直線式を計算します。 * @param i_st * 直線計算の対象とする、輪郭点の開始インデックス * @param i_ed * 直線計算の対象とする、輪郭点の終了インデックス * @param i_coord * 輪郭点集合のオブジェクト。 * @param o_line * 直線式を受け取るオブジェクト * @return * 直線式の計算に成功すると、trueを返します。 * @ */ public bool coord2Line(int i_st, int i_ed, NyARIntCoordinates i_coord, NyARLinear o_line) { //頂点を取得 int n, st, ed; double w1; int cood_num = i_coord.length; //探索区間の決定 if (i_ed >= i_st) { //頂点[i]から頂点[i+1]までの輪郭が、1区間にあるとき w1 = (double)(i_ed - i_st + 1) * 0.05 + 0.5; //探索区間の決定 st = (int)(i_st + w1); ed = (int)(i_ed - w1); } else { //頂点[i]から頂点[i+1]までの輪郭が、2区間に分かれているとき w1 = (double)((i_ed + cood_num - i_st + 1) % cood_num) * 0.05 + 0.5; //探索区間の決定 st = ((int)(i_st + w1)) % cood_num; ed = ((int)(i_ed + cood_num - w1)) % cood_num; } //探索区間数を確認 if (st <= ed) { //探索区間は1区間 n = ed - st + 1; if (this._dist_factor != null) { this._dist_factor.observ2IdealBatch(i_coord.items, st, n, this._xpos, this._ypos, 0); } } else { //探索区間は2区間 n = ed + 1 + cood_num - st; if (this._dist_factor != null) { this._dist_factor.observ2IdealBatch(i_coord.items, st, cood_num - st, this._xpos, this._ypos, 0); this._dist_factor.observ2IdealBatch(i_coord.items, 0, ed + 1, this._xpos, this._ypos, cood_num - st); } } //要素数の確認 if (n < 2) { // nが2以下でmatrix.PCAを計算することはできないので、エラー return(false); } //主成分分析する。 NyARDoubleMatrix22 evec = this.__getSquareLine_evec; double[] mean = this.__getSquareLine_mean; this._pca.pca(this._xpos, this._ypos, n, evec, this.__getSquareLine_ev, mean); o_line.a = evec.m01; // line[i][0] = evec->m[1]; o_line.b = -evec.m00; // line[i][1] = -evec->m[0]; o_line.c = -(o_line.a * mean[0] + o_line.b * mean[1]); // line[i][2] = -(line[i][0]*mean->v[0] + line[i][1]*mean->v[1]); return(true); }
/** * この関数は、遠近法のパラメータを計算して、返却します。 */ public sealed override bool getParam(int i_dest_w, int i_dest_h, double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, double[] o_param) { double ltx = this._local_x; double lty = this._local_y; double rbx = ltx + i_dest_w; double rby = lty + i_dest_h; NyARDoubleMatrix44 mat_x = new NyARDoubleMatrix44(); mat_x.m00 = ltx; mat_x.m01 = lty; mat_x.m02 = -ltx * x1; mat_x.m03 = -lty * x1; mat_x.m10 = rbx; mat_x.m11 = lty; mat_x.m12 = -rbx * x2; mat_x.m13 = -lty * x2; mat_x.m20 = rbx; mat_x.m21 = rby; mat_x.m22 = -rbx * x3; mat_x.m23 = -rby * x3; mat_x.m30 = ltx; mat_x.m31 = rby; mat_x.m32 = -ltx * x4; mat_x.m33 = -rby * x4; mat_x.inverse(mat_x); NyARDoubleMatrix44 mat_y = new NyARDoubleMatrix44(); mat_y.m00 = ltx; mat_y.m01 = lty; mat_y.m02 = -ltx * y1; mat_y.m03 = -lty * y1; mat_y.m10 = rbx; mat_y.m11 = lty; mat_y.m12 = -rbx * y2; mat_y.m13 = -lty * y2; mat_y.m20 = rbx; mat_y.m21 = rby; mat_y.m22 = -rbx * y3; mat_y.m23 = -rby * y3; mat_y.m30 = ltx; mat_y.m31 = rby; mat_y.m32 = -ltx * y4; mat_y.m33 = -rby * y4; mat_y.inverse(mat_y); double a = mat_x.m20 * x1 + mat_x.m21 * x2 + mat_x.m22 * x3 + mat_x.m23 * x4; double b = mat_x.m20 + mat_x.m21 + mat_x.m22 + mat_x.m23; double d = mat_x.m30 * x1 + mat_x.m31 * x2 + mat_x.m32 * x3 + mat_x.m33 * x4; double f = mat_x.m30 + mat_x.m31 + mat_x.m32 + mat_x.m33; double g = mat_y.m20 * y1 + mat_y.m21 * y2 + mat_y.m22 * y3 + mat_y.m23 * y4; double h = mat_y.m20 + mat_y.m21 + mat_y.m22 + mat_y.m23; double i = mat_y.m30 * y1 + mat_y.m31 * y2 + mat_y.m32 * y3 + mat_y.m33 * y4; double j = mat_y.m30 + mat_y.m31 + mat_y.m32 + mat_y.m33; NyARDoubleMatrix22 tm = new NyARDoubleMatrix22(); tm.m00 = b; tm.m01 = -h; tm.m10 = f; tm.m11 = -j; tm.inverse(tm); double A, B, C, D, E, F, G, H; C = tm.m00 * (a - g) + tm.m01 * (d - i); //C F = tm.m10 * (a - g) + tm.m11 * (d - i); //F G = a - C * b; H = d - C * f; A = (mat_x.m00 * x1 + mat_x.m01 * x2 + mat_x.m02 * x3 + mat_x.m03 * x4) - C * (mat_x.m00 + mat_x.m01 + mat_x.m02 + mat_x.m03); B = (mat_x.m10 * x1 + mat_x.m11 * x2 + mat_x.m12 * x3 + mat_x.m13 * x4) - C * (mat_x.m10 + mat_x.m11 + mat_x.m12 + mat_x.m13); D = (mat_y.m00 * y1 + mat_y.m01 * y2 + mat_y.m02 * y3 + mat_y.m03 * y4) - F * (mat_y.m00 + mat_y.m01 + mat_y.m02 + mat_y.m03); E = (mat_y.m10 * y1 + mat_y.m11 * y2 + mat_y.m12 * y3 + mat_y.m13 * y4) - F * (mat_y.m10 + mat_y.m11 + mat_y.m12 + mat_y.m13); o_param[0] = A; o_param[1] = B; o_param[2] = C; o_param[3] = D; o_param[4] = E; o_param[5] = F; o_param[6] = G; o_param[7] = H; return(true); }