示例#1
0
        /**
         * Returns a node corresponding to a local maximum or empty if the search was
         * cancelled by the user.
         *
         * @param p the search problem
         * @return a node or empty
         */
        // function HILL-CLIMBING(problem) returns a state that is a local maximum
        public Node <S, A> findNode(IProblem <S, A> p)
        {
            clearMetrics();
            outcome = SearchOutcome.FAILURE;
            // current <- MAKE-NODE(problem.INITIAL-STATE)
            Node <S, A> current = nodeExpander.createRootNode(p.getInitialState());
            Node <S, A> neighbor;

            // loop do
            while (!currIsCancelled)
            {
                lastState = current.getState();
                metrics.set(METRIC_NODE_VALUE, getValue(current));
                ICollection <Node <S, A> > children = nodeExpander.expand(current, p);
                // neighbor <- a highest-valued successor of current
                neighbor = getHighestValuedNodeFrom(children);

                // if neighbor.VALUE <= current.VALUE then return current.STATE
                if (neighbor == null || getValue(neighbor) <= getValue(current))
                {
                    if (p.testSolution(current))
                    {
                        outcome = SearchOutcome.SOLUTION_FOUND;
                    }
                    return(current);
                }
                // current <- neighbor
                current = neighbor;
            }
            return(null);
        }
示例#2
0
        public Node <S, A> findNode(IProblem <S, A> p)
        {
            clearMetrics();
            // return RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem,
            // limit)
            Node <S, A> node = recursiveDLS(nodeExpander.createRootNode(p.getInitialState()), p, limit);

            return(node != null ? node : null);
        }
示例#3
0
        /**
         * Returns a list of actions to the goal if the goal was found, a list
         * containing a single NoOp Action if already at the goal, or an empty list
         * if the goal could not be found. This template method provides a base for
         * tree and graph search implementations. It can be customized by overriding
         * some primitive operations, especially {@link #addToFrontier(Node)},
         * {@link #removeFromFrontier()}, and {@link #isFrontierEmpty()}.
         *
         * @param problem
         *            the search problem
         * @param frontier
         *            the collection of nodes that are waiting to be expanded
         *
         * @return a list of actions to the goal if the goal was found, a list
         *         containing a single NoOp Action if already at the goal, or an
         *         empty list if the goal could not be found.
         */
        public virtual List <Action> search(Problem problem, List <Node> frontier)
        {
            this.frontier = frontier;
            clearInstrumentation();
            // initialize the frontier using the initial state of the problem
            Node root = nodeExpander.createRootNode(problem.getInitialState());

            if (earlyGoalCheck)
            {
                if (SearchUtils.isGoalState(problem, root))
                {
                    return(getSolution(root));
                }
            }
            addToFrontier(root);
            while (!(frontier.Count == 0))
            {
                // choose a leaf node and remove it from the frontier
                Node nodeToExpand = removeFromFrontier();
                // Only need to check the nodeToExpand if have not already
                // checked before adding to the frontier
                if (!earlyGoalCheck)
                {
                    // if the node contains a goal state then return the
                    // corresponding solution
                    if (SearchUtils.isGoalState(problem, nodeToExpand))
                    {
                        return(getSolution(nodeToExpand));
                    }
                }
                // expand the chosen node, adding the resulting nodes to the
                // frontier
                foreach (Node successor in nodeExpander.expand(nodeToExpand, problem))
                {
                    if (earlyGoalCheck)
                    {
                        if (SearchUtils.isGoalState(problem, successor))
                        {
                            return(getSolution(successor));
                        }
                    }
                    addToFrontier(successor)
                    ;
                }
            }
            // if the frontier is empty then return failure
            return(SearchUtils.failure());
        }
示例#4
0
        // function SIMULATED-ANNEALING(problem, schedule) returns a solution state
        public Node <S, A> findNode(IProblem <S, A> p)
        {
            clearMetrics();
            outcome   = SearchOutcome.FAILURE;
            lastState = default(S);
            // current <- MAKE-NODE(problem.INITIAL-STATE)
            Node <S, A> current = nodeExpander.createRootNode(p.getInitialState());
            // for t = 1 to INFINITY do
            int timeStep = 0;

            while (!currIsCancelled)
            {
                // temperature <- schedule(t)
                double temperature = scheduler.getTemp(timeStep);
                timeStep++;
                lastState = current.getState();
                // if temperature = 0 then return current
                if (temperature == 0.0)
                {
                    if (p.testSolution(current))
                    {
                        outcome = SearchOutcome.SOLUTION_FOUND;
                    }
                    return(current);
                }

                updateMetrics(temperature, getValue(current));
                ICollection <Node <S, A> > children = nodeExpander.expand(current, p);
                if (children.Size() > 0)
                {
                    // next <- a randomly selected successor of current
                    Node <S, A> next = Util.selectRandomlyFromList(children);
                    // /\E <- next.VALUE - current.value
                    double deltaE = getValue(next) - getValue(current);

                    if (shouldAccept(temperature, deltaE))
                    {
                        current = next;
                    }
                }
            }
            return(null);
        }
示例#5
0
        /**
         * Receives a problem and a queue implementing the search strategy and
         * computes a node referencing a goal state, if such a state was found.
         * This template method provides a base for tree and graph search
         * implementations. It can be customized by overriding some primitive
         * operations, especially {@link #addToFrontier(Node)},
         * {@link #removeFromFrontier()}, and {@link #isFrontierEmpty()}.
         *
         * @param problem
         *            the search problem
         * @param frontier
         *            the data structure for nodes that are waiting to be expanded
         *
         * @return a node referencing a goal state, if the goal was found, otherwise empty;
         */
        public virtual Node <S, A> findNode(IProblem <S, A> problem, ICollection <Node <S, A> > frontier)
        {
            this.frontier = frontier;
            clearMetrics();
            // initialize the frontier using the initial state of the problem
            Node <S, A> root = nodeExpander.createRootNode(problem.getInitialState());

            addToFrontier(root);
            if (earlyGoalTest && problem.testSolution(root))
            {
                return(getSolution(root));
            }

            while (!isFrontierEmpty() && !currIsCancelled)
            {
                // choose a leaf node and remove it from the frontier
                Node <S, A> nodeToExpand = removeFromFrontier();
                // only need to check the nodeToExpand if have not already
                // checked before adding to the frontier
                if (!earlyGoalTest && problem.testSolution(nodeToExpand))
                {
                    // if the node contains a goal state then return the
                    // corresponding solution
                    return(getSolution(nodeToExpand));
                }

                // expand the chosen node, adding the resulting nodes to the
                // frontier
                foreach (Node <S, A> successor in nodeExpander.expand(nodeToExpand, problem))
                {
                    addToFrontier(successor);
                    if (earlyGoalTest && problem.testSolution(successor))
                    {
                        return(getSolution(successor));
                    }
                }
            }
            // if the frontier is empty then return failure
            return(null);
        }