void data_test() { float[] test = new float[2] { 0, 0 }; float[] test2 = new float[2] { 0, 1 }; float[] test3 = new float[2] { 1, 0 }; float[] test4 = new float[2] { 1, 1 }; float[] predict = nn.predict(test); //float[] predict2 = nn.predict(test2); //float[] predict3 = nn.predict(test3); //float[] predict4 = nn.predict(test4); Debug.Log("output data test"); Debug.Log(predict[0]); //Debug.Log(predict2[0]); //Debug.Log(predict3[0]); //Debug.Log(predict4[0]); }
/** * test the data with XOR input * */ void data_test() { float[] test1 = new float[2] { 0, 0 }; float[] test2 = new float[2] { 0, 1 }; float[] test3 = new float[2] { 1, 0 }; float[] test4 = new float[2] { 1, 1 }; float[] predict1 = nn.predict(test1); float[] predict2 = nn.predict(test2); float[] predict3 = nn.predict(test3); float[] predict4 = nn.predict(test4); Debug.Log("output data test"); //Debug.Log(predict1[0]); // output should be 0 ( false ) //Debug.Log(predict2[0]); // output should be 1 ( true ) //Debug.Log(predict3[0]); // output should be 1 ( true ) //Debug.Log(predict4[0]); // output should be 0 ( false ) /** * NOTE: if the output data got stuck beetwen 4 and 5 for a long time, restart train data * * cause: random weight input wasn't good. * */ // if predict output[0] is less then 0.01 / false, then done if (predict1[0] < 0.01) { Debug.Log("Done"); } else { Debug.Log(predict1[0]); } }